
EMBEDDED TOLERANCE ANALYSIS FOR SENSOR SYSTEMS

Mohamed Dekhil
Department of Computer Science

University of Utah
Salt Lake City, Utah 84112, USA

Tarek M. Sobh
Department of Computer Science and Engineering

University of Bridgeport
Bridgeport, CT 06601, USA

ABSTRACT

Tolerance analysis constitutes an essential task in designing and building robust sensor systems
for robotic applications. In most current practices, tolerance analysis is considered after the
system is designed and implemented. This leads to poor system integrity and lower overall
reliability. In this paper we discuss several aspects of tolerance analysis for sonar sensors used
for mobile robot applications. We show how to embed tolerance analysis within a distributed
control scheme. Simulation results of applying this model are presented with a brief discussion
and conclusion on these results.

INTRODUCTION

In any closed-loop control system, sensors are used to provide the feedback information that
represents the current status of the system and the environmental uncertainties. The main
components in such systems are the transformation of sensor outputs to the decision space and
the computation of the error signals and the joint-level commands. For example, the sensor
readings might be the current tool position, the error signal is the difference between the desired
and current position at this moment, and the joint-level command is the required actuator
torque/force.

In previous work we proposed a distributed control scheme for mobile robots(1,2). In this control
scheme, several controllers (clients) are working in parallel, competing for the server. The server
selects the command to be executed based on a dynamically configured priority scheme. Each of
these clients has a certain task, and can use the sensor readings to achieve its goal. A special
client with the task of avoiding obstacles is assigned the highest priority.

Tolerance analysis can be incorporated in one or more of the client processes. Hi-level requests
including time and accuracy requirements can be issued to such processes and the build-in
analysis will be used to satisfy these requests (if feasible). Thus, tolerance analysis is an
integrated component of the model which help generate a more robust and reliable system.

Tolerance analysis has been addressed by many researchers. Brooks and Iyengar proposed an
averaging algorithm for multidimensional redundant sensor arrays(3). This algorithm provides
fault tolerance sensor integration. Prasad proposed a sensor model based on functional
characterization of fault tolerant integration in distributed sensor networks(4).

In this paper, we incorporate tolerance analysis and measures into the sensor model system. This
provides quantitative measures for the accuracy of the of measured data. It also serves as the
basis for devising sensing strategies to enhance the measured data for localization and map
construction.

TOLERANCE ANALYSIS FOR SONAR SENSORS

Sonar sensors have been widely used in several robotic applications. This is due to their low cost
and reasonable reliability. However, sonar sensors, like most ultrasonic sensors, have several
drawbacks. One problem is that the data measurements depends on the speed of sound, which
vary according to the atmospheric conditions such as temperature and humidity. This usually
results in inaccurate and inconsistent readings. Another problem is that the ultrasonic echoes
might cause the sensor to measure totally incorrect values. The use of ultrasonic sensors for
mobile robots has been investigated by a lot of researcher(5,6,7). The main goal is to increase the
accuracy and reliability of these sensors, and to filter the noise and echoes to get more consistent
data.

The most important criteria in any sensor system are time and accuracy. Time is the time elapsed
between issuing a read request to the logical sensor and the reply to that request. This time
depends on the physical aspects of the sensory system, and on the sensing strategy implemented
in the logical sensor. Tolerance is defined in this scheme as the region in which the measurement
resides.

The following are some variables that will be used in the tolerance analysis for our experiment.

• vs: velocity of sound.
• ymax: maximum distance in our indoor environment.
• ymin : minimum distance in our indoor environment.
• t m: the maximum time to get a measurement by the physical sonar sensor.

t
y
vm

s
=

2 max

• v r : the linear velocity of the robot in meter/sec.
• Ω r : the angular velocity of the robot in rad/sec.

• t d : decision time; the time to decide the next action based on the current reading.
In most cases, we cannot satisfy both requirement at the same time. Since the physical sensor has
its accuracy limitations, therefore, we might need to get several readings regarding the same
measured point to increase the accuracy. This of course will increase the time of measurement.
In case of multisensor system, the accuracy can be increased by considering the readings from
more than one sensor. In such cases, we should consider the time to fuse the data.

In this analysis, we will ignore measurement noise, and errors due to the interference between
the sensors. Also, we will use a simplified beam pattern for the sonar sensors which is a triangle
shape centered at the center of the sensor. Our goal here is to be able to determine the location of
the measured point within a certain tolerance. Also, we would like to locate edges and door ways
within a reasonable tolerance. First, the case of using one sensor will be considered, then the use
of multiple sensors to get more accurate measurements will be discussed.

USING ONE SONAR

Figure 1 shows the simplified beam pattern of a sonar sensor. We assume that the sensor will
return the distance y of the closest point P from the center of the sensor within a tolerance region
2x, where x = y tan θ.

It is clear that the tolerance area depends on the
angle θ and the distance y. However, the angle
is fixed for most sonar sensors (It may vary
according to the operating frequency.) In our
experiment for example, θ = 11. Also, there is
physical limitations on the minimum distance
ymin which means there is an upper limit on the
accuracy that we can get with the sensor. The
upper limit is:

x ymin min tan= θ

There are several ways to minimize the
tolerance region and to detect the existence of
edges within this region. One way is to move in
the y direction towards the measured point.
Another way is to move small movements in
the x direction, and a third technique is to rotate
with small angle φ. In each case, the readings
are combined to get smaller tolerance region.
Now, let�s discuss each of these techniques in
more details.

Translation in the y direction

Figure 1: The simplified sonar model

Moving ∆y in the y direction towards the measured point, the tolerance region is decreased by:

∆ ∆x y= tanθ

This is shown in

Figure 2 where y is the initial distance and x is the initial tolerance region, and y� is the new
distance and x� is the new tolerance region. The time to make this movement t y is equal to:

t
y

vy
r

=
∆

and total time to make this reduction in the tolerance region is equal to
t t ty d= +

If the new distance y� is different than y - ∆y,
this means that we encountered an edge or a
door way. Figure 3 shows different situations in
which this may occur.

In this case, the edge can be located with
tolerance 2∆x since the edge may be at either
side as in cases 1 and 3 of Figure 3 or at both
side as in case 2 of the same figure. To
determine on which side the edge is located,
we can move the robot very small distances in
the x direction to left and to the right, and by
combining these readings we can determine
the edge location within ∆x tolerance.
Another way to determine the edge location is
by rotating the robot clockwise and counter
clockwise using small angles, and combining
the readings as before to determine the edge
location.

Translation in the x direction

Moving the robot in the x direction will result in an overlapping region equals to:

y xtanθ − 2∆

as shown in Figure 4. The time needed for this movement is equal to:

Figure 2: Translation in the y direction

t
x

vx
r

=
∆

However, in our experiment, the robot can only move forward and backward. To move in the x
direction, we need to rotate the robot 90 degrees, then move forward ∆x, and finally rotate back
90 degrees again. Therefore, the time needed to move ∆x is:

t
x

vx
r

= +πω
∆

and by adding the time to decide taking this
movement, the total time will be:

t t tx d= +

If the two readings are the same (i.e., y� = y),
then we have two possibilities; the measured
point is in the overlapping region, or it is
outside the overlapping region. Figure 5 shows
the two cases.

The probability that the two readings
correspond to points in the overlapping region
is:

y x
y x
tan
tan

θ
θ
−
+
2∆
∆

This formula shows that the probability of the
point to be in the overlapping region decreases by increasing ∆x

Figure 3: Different situations while movinh in the y direction

Figure 4: Translation in the x direction

If the two readings are different (i.e., y� ≠ y), then again, we have two cases as shown in Figure 6;
y� > y which means that there is an edge within the left ∆x region, and y� < y which means that
there is an edge within the right ∆x region.

Figure 5: Moving in the x direction with y'=y

Figure 6: Moving in the x direction with y'≠y

Rotating the robot φ degrees

Rotation is similar to moving in the x direction. By rotating a small angle φ, where:

− < <2 2θ φ θ

and with rotation radius r, there will be an overlapping area as shown in Figure 7. This
overlapping area starts at a distance d o which can be calculated as follows:

d ec gco = −

where

ec r= + −sin() tan()φ φ
π

θ
2

gc r r r= − = −cos() (cos())φ φ1

Finally, we have:

d r[sin(o = + − + −φ φ
π

θ φ) tan() cos()]
2

1

For small values of φ, d o can be
approximated by:

d
r

o =
φ
θtan()

Therefore, if the sensor reading is
y, we should rotate the robot such
that y > do, otherwise, the reading
will be outside the overlapping
region. In other words, the rotation
angle φ is limited by the sensor
reading as follow:

φ
θ

<
y

r
tan()

Using case analysis similar to what we did for moving the robot in the x direction, with
substituting ∆x with rφ, we can get new tolerance regions with probabilities associated to them in
the same way we did before for the translation in the x direction.

The time needed to rotate φ degrees trot is equal to ωφ and adding the decision time td we get the
total time.

Figure 7: Rotating the robot φ degrees

USING MULTIPLE SONARS

This case is exactly the same as rotating the robot, except for the fact that the angle φ is fixed. In
case where the sensors are arranged in a circle and distributed on equal spacing angles, φ
depends on the number of sensors used. For example, if we have 24 sensors, then φ = 2π/24. To
have an overlapping region, φ should be less than 2θ. Also, to consider this overlapping region,
the sensor readings y for both sensors should be grater than do as discussed before.

Again, the case analysis that we did for translation in the x direction can be used here by
replacing ∆x with rφ. This way we can get smaller tolerance areas with certain probabilities. The
probability that the reading is in the overlapping area depends on the value of the readings and
on the angles φ and θ.

SIMULATION RESULTS

In this experiment, We demonstrate the use of the tolerance measures discussed earlier. This
experiment also illustrates the use of the logical sensors concept to implement high-level
requests which incorporate tolerance measures and time calculations.

The request which was implemented for this experiment is measure which has the following
syntax: measure (tolerance, time, preference), where tolerance is the required tolerance with 0
meaning get the best tolerance, and -1 means tolerance is not important. time is the required
response time, and again 0 means as fast as possible, and -1 means time is not important. When
both, time and tolerance are specified, the logical sensor may not be able to satisfy both criteria,
and this is when preference is used to specify which criteria should be preferred. This request
returns the resulting tolerance and the time consumed into the same parameters that were sent.

The following is the output of a program which uses this request to measure a point in front of
the robot. First it sends a request to get the measure as fast as possible ignoring the tolerance.

Fast response required ...
!!! minimum time ...
!!! current reading is 2071 mm, with tolerance 402.4 in time 0.9 sec.
Result: distance = 2071 mm, tolerance = 402.4, and time = 0.9 sec.

Second, the program sends a request to get the best accuracy (minimum tolerance), and the time
is irrelevant.
Best tolerance required ...
!!! minimize the tolerance ...
!!! current reading is 1536 mm, with tolerance 298.4 mm. in time 0.6 msec.
!!! current reading is 1412 mm, with tolerance 274.3 mm. in time 2.5 msec.
!!! current reading is 1383 mm, with tolerance 268.7 mm. in time 3.4 msec.
!!! current reading is 1350 mm, with tolerance 262.3 mm. in time 4.4 msec.
!!! current reading is 1291 mm, with tolerance 250.8 mm. in time 5.6 msec.
!!! current reading is 1259 mm, with tolerance 244.6 mm. in time 6.5 msec.
!!! current reading is 1215 mm, with tolerance 236.0 mm. in time 7.6 msec.

!!! current reading is 1168 mm, with tolerance 226.9 mm. in time 8.7 msec.
!!! current reading is 1139 mm, with tolerance 221.3 mm. in time 9.6 msec.
!!! current reading is 1091 mm, with tolerance 212.0 mm. in time 10.4 msec.
!!! current reading is 1062 mm, with tolerance 206.3 mm. in time 11.0 msec.
!!! current reading is 1015 mm, with tolerance 197.2 mm. in time 11.8 msec.
!!! current reading is 971 mm, with tolerance 188.6 mm. in time 12.5 msec.
!!! current reading is 938 mm, with tolerance 182.2 mm. in time 13.2 msec.
!!! current reading is 894 mm, with tolerance 173.7 mm. in time 13.9 msec.
!!! current reading is 847 mm, with tolerance 164.6 mm. in time 14.7 msec.
!!! current reading is 818 mm, with tolerance 158.9 mm. in time 15.3 msec.
!!! current reading is 756 mm, with tolerance 146.9 mm. in time 16.3 msec.
!!! current reading is 724 mm, with tolerance 140.7 mm. in time 16.9 msec.
!!! current reading is 694 mm, with tolerance 134.8 mm. in time 17.5 msec.
!!! current reading is 633 mm, with tolerance 123.0 mm. in time 18.4 msec.
!!! current reading is 603 mm, with tolerance 117.2 mm. in time 19.0 msec.
distance = 1536 mm, tolerance = 117.2, and time = 19.0 msec.
Finally, the program specifies both time and tolerance to be met, preferring the time.
Tolerance required = 150.0, time required = 6.0 msec.
!!! both criteria are specified ...
!!! current reading is 2190 mm, with tolerance 425.5 mm. and time 0.9 msec.
!!! current reading is 2101 mm, with tolerance 408.2 mm. and time 2.7 msec.
!!! current reading is 2068 mm, with tolerance 401.8 mm. and time 4.1 msec.
!!! current reading is 2026 mm, with tolerance 393.6 mm. and time 5.6 msec.

Result: distance = 2190 mm, tolerance = 393.6, and time = 5.6 msec.

Figure 8 shows the movement of the robot while taking these measurements. The first request did
not cause any movement since it required minimum time. The second request caused the robot to
move forward to minimize the tolerance region. During this movement, the speed of the robot
decreases to get better accuracy. Finally, the last request also caused the robot to move forward,
but it stopped before reaching the required tolerance since the time was preferred.

In this experiment we used only the translation in the y direction to minimize the tolerance.
However, the other two approaches mentioned earlier could be used to get better results with
probability measures as well.

CONCLUSION

In this paper, tolerance measures for sonar sensors were proposed and different strategies to
increase position accuracy were investigated. An example for applying this control scheme to a
mobile robot was described along with the simulation results. We believe that this scheme
provides more flexible and robust control systems, and allows more modular design for the
whole control system. It also provides fast response for reaction behavior which is an essential
requirement in real-time systems.

The next step to this work is to implement a distributed controller including higher level
functions for increasing the accuracy of the measured point locations. These function will be
defined utilizing the different tolerance analysis approaches discussed in the paper.

REFERENCES

1. M. Dekhil, T. M. Sobh, and A. Efros, �Commanding sensors and controlling �. IEEE Intl.

Conference on Control Applications. Michigan, September 1996.
2. M. Dekhil, T. M. Sobh, and A. Efros, �Prototyping hybrid distributed control scheme for

sensor-based mobile robots.� Invited paper. 10th IEEE Intl. Symposium on Intelligent Control
(ISIC 95), Monterey, California, August 1995.

3. R. R. Brooks and S. S. Iyengar, �Averaging algorithm for multi-dimensional redundant
sensor arrays: solving sensor inconsistencies.� Tech. Report, Louisiana State Univ., 1993.

4. L. Prasad, et. al., �Functional characterization in fault tolerance integrated sensor networks.�
IEEE trans. Systems, Man, and Cybernetics. September 1991, pp. 1080-1087.

5. J. Budenske and M. Gini, �Why is it difficult for a robot to pass through a doorway using
ultrasonic sensors?� In IEEE Int. Conf. of Robotics and Automation, May 1994, pp. 3124-
3129.

6. L. Kleeman and R. Kuc, �An optimal sonar array for target localization and classification.�
In IEEE Int. Conf. of Robotics and Automation, May 1994, pp. 3130-3135.

7. L. Korba, �Variable aperture sonar for mobile robots.� IEEE Int. Conf. of Robotics and
Automation, May 1994, pp. 3142-3147.

Figure 8: The trajectory of the robot while performing the requests

