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ABSTRACT 
 
Tolerance analysis constitutes an essential task in designing and building robust sensor systems 
for robotic applications.  In most current practices, tolerance analysis is considered after the 
system is designed and implemented. This leads to poor system integrity and lower overall 
reliability. In this paper we discuss several aspects of tolerance analysis for sonar sensors used 
for mobile robot applications. We show how to embed tolerance analysis within a distributed 
control scheme.  Simulation results of applying this model  are presented with a brief discussion 
and conclusion on these results. 
 

INTRODUCTION 
 
In any closed-loop control system, sensors are used to provide the feedback information that 
represents the current status of the system and the environmental uncertainties.  The main 
components in such systems are the transformation of sensor outputs to the decision space and 
the computation of the error signals and the joint-level commands. For example, the sensor 
readings might be the current tool position, the error signal is the difference between the desired 
and current position at this moment, and the joint-level command is the required actuator 
torque/force. 

In previous work we proposed a distributed control scheme for mobile robots(1,2).  In this control 
scheme, several controllers (clients) are working in parallel, competing for the server. The server 
selects the command to be executed based on a dynamically configured priority scheme. Each of 
these clients has a certain task, and can use the sensor readings to achieve its goal. A special 
client with the task of avoiding obstacles is assigned the highest priority.   



Tolerance analysis can be incorporated in one or more of the client processes.  Hi-level requests 
including time and accuracy requirements can be issued to such processes and the build-in 
analysis will be used to satisfy these requests (if feasible).  Thus, tolerance analysis is an 
integrated component of the model which help generate a more robust and reliable system. 

Tolerance analysis has been addressed by many researchers.  Brooks and Iyengar proposed an 
averaging algorithm for multidimensional redundant sensor arrays(3). This algorithm provides 
fault tolerance sensor integration.  Prasad proposed a sensor model based on functional 
characterization of fault tolerant integration in distributed sensor networks(4).  

In this paper, we incorporate tolerance analysis and measures into the sensor model system. This 
provides quantitative measures for the accuracy of the of measured data. It also serves as the 
basis for devising sensing strategies to enhance the measured data for localization and map 
construction.  
 

TOLERANCE ANALYSIS FOR SONAR SENSORS 
 
Sonar sensors have been widely used in several robotic applications. This is due to their low cost 
and reasonable reliability. However, sonar sensors, like most ultrasonic sensors, have several 
drawbacks. One problem is that the data measurements depends on the speed of sound, which 
vary according to the atmospheric conditions such as temperature and humidity. This usually 
results in inaccurate and inconsistent readings. Another problem is that the ultrasonic echoes 
might cause the sensor to measure totally incorrect values. The use of ultrasonic sensors for 
mobile robots has been investigated by a lot of researcher(5,6,7). The main goal is to increase the 
accuracy and reliability of these sensors, and to filter the noise and echoes to get more consistent 
data. 

The most important criteria in any sensor system are time and accuracy. Time is the time elapsed 
between issuing a read request to the logical sensor and the reply to that request. This time 
depends on the physical aspects of the sensory system, and on the sensing strategy implemented 
in the logical sensor. Tolerance is defined in this scheme as the region in which the measurement 
resides. 

The following are some variables that will be used in the tolerance analysis for our experiment. 

• vs:  velocity of sound. 
• ymax:  maximum distance in our indoor environment. 
• ymin :  minimum distance in our indoor environment. 
• t m:  the maximum time to get a measurement by the physical sonar sensor. 
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• v r :  the linear velocity of the robot in meter/sec. 
• Ω r :  the angular velocity of the robot in rad/sec.   



• t d :  decision time; the time to decide the next action based on the current reading. 
In most cases, we cannot satisfy both requirement at the same time. Since the physical sensor has 
its accuracy limitations, therefore, we might need to get several readings regarding the same 
measured point to increase the accuracy. This of course will increase the time of measurement. 
In case of multisensor system, the accuracy can be increased by considering the readings from 
more than one sensor. In such cases, we should consider the time to fuse the data.  

In this analysis, we will ignore measurement noise, and errors due to the interference between 
the sensors. Also, we will use a simplified beam pattern for the sonar sensors which is a triangle 
shape centered at the center of the sensor. Our goal here is to be able to determine the location of 
the measured point within a certain tolerance. Also, we would like to locate edges and door ways 
within a reasonable tolerance. First, the case of using one sensor will be considered, then the use 
of multiple sensors to get more accurate measurements will be discussed. 
 

USING ONE SONAR 
 
Figure 1 shows the simplified beam pattern of a sonar sensor. We assume that the sensor will 
return the distance y of the closest point P from the center of the sensor within a tolerance region 
2x, where x = y tan θ. 

It is clear that the tolerance area depends on the 
angle θ and the distance y.  However, the angle 
is fixed for most sonar sensors (It may vary 
according to the operating frequency.) In our 
experiment for example, θ = 11. Also, there is 
physical limitations on the minimum distance 
ymin  which means there is an upper limit on the 
accuracy that we can get with the sensor. The 
upper limit is: 

x ymin min tan= θ  

There are several ways to minimize the 
tolerance region and to detect the existence of 
edges within this region. One way is to move in 
the y direction towards the measured point. 
Another way is to move small movements in 
the x direction, and a third technique is to rotate 
with small angle φ.  In each case, the readings 
are combined to get smaller tolerance region. 
Now, let�s discuss each of these techniques in 
more details. 

Translation in the y direction 

 
 

 
Figure 1:  The simplified sonar model 

 



 
Moving ∆y in the y direction towards the measured point, the tolerance region is decreased by: 

∆ ∆x y= tanθ  

This is shown in   

Figure 2 where y is the initial distance and x is the initial tolerance region, and y� is the new 
distance and x� is the new tolerance region. The time to make this movement t y  is equal to: 
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and total time to make this reduction in the tolerance region is equal to  
t t ty d= +  

If the new distance y� is different than y - ∆y, 
this means that we encountered an edge or a 
door way. Figure 3 shows different situations in 
which this may occur.  

In this case, the edge can be located with 
tolerance 2∆x since the edge may be at either 
side as in cases 1 and 3 of Figure 3 or at both 
side as in case 2 of the same figure. To 
determine on which side the edge is located, 
we can move the robot very small distances in 
the x direction to left and to the right, and by 
combining these readings we can determine 
the edge location within ∆x tolerance. 
Another way to determine the edge location is 
by rotating the robot clockwise and counter 
clockwise using small angles, and combining 
the readings as before to determine the edge 
location.  

 

Translation in the x direction 
 
Moving the robot in the x direction will result in an overlapping region equals to: 

y xtanθ − 2∆  

as shown in Figure 4. The time needed for this movement is equal to: 

  

Figure 2: Translation in the y direction 
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However, in our experiment, the robot can only move forward and backward. To move in the x 
direction, we need to rotate the robot 90 degrees, then move forward ∆x, and finally rotate back 
90 degrees again. Therefore, the time needed to move ∆x is: 

t
x

vx
r

= +πω
∆

 

and by adding the time to decide taking this 
movement, the total time will be: 

t t tx d= +  

If the two readings are the same (i.e., y� = y), 
then we have two possibilities; the measured 
point is in the overlapping region, or it is 
outside the overlapping region. Figure 5 shows 
the two cases.   

The probability that the two readings 
correspond to points in the overlapping region 
is: 

y x
y x
tan
tan

θ
θ
−
+
2∆
∆

 

This formula shows that the probability of the 
point to be in the overlapping region decreases by increasing ∆x 

 

Figure 3: Different situations while movinh in the y direction 
 

Figure 4: Translation in the x direction 
 



If the two readings are different (i.e., y� ≠ y), then again, we have two cases as shown in Figure 6; 
y� > y which means that there is an edge within the left ∆x region, and y� < y which means that 
there is an edge within the right ∆x region. 

 

 
 

 
Figure 5: Moving in the x direction with y'=y 

 
 

 
Figure 6: Moving in the x direction with y'≠y 

 



Rotating the robot φ degrees 

 

Rotation is similar to moving in the x direction. By rotating a small angle φ, where: 

− < <2 2θ φ θ  

and with rotation radius r, there will be an overlapping area as shown in Figure 7. This 
overlapping area starts at a distance d o which can be calculated as follows: 

d ec gco = −  

where 

ec r= + −sin( ) tan( )φ φ
π

θ
2

 

gc r r r= − = −cos( ) ( cos( ))φ φ1  

Finally, we have:  

d r[sin(o = + − + −φ φ
π
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For small values of φ, d o can be 
approximated by: 

d
r
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Therefore, if the sensor reading is 
y, we should rotate the robot such 
that y > do, otherwise, the reading 
will be outside the overlapping 
region. In other words, the rotation 
angle φ is limited by the sensor 
reading as follow: 
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Using case analysis similar to what we did for moving the robot in the x direction, with 
substituting ∆x with rφ, we can get new tolerance regions with probabilities associated to them in 
the same way we did before for the translation in the x direction.  

The time needed to rotate φ degrees trot is equal to ωφ and adding the decision time td we get the 
total time. 

 
Figure 7: Rotating the robot φ degrees 

 



USING MULTIPLE SONARS 
 
This case is exactly the same as rotating the robot, except for the fact that the angle φ is fixed. In 
case where the sensors are arranged in a circle and distributed on equal spacing angles, φ 
depends on the number of sensors used. For example, if we have 24 sensors, then φ = 2π/24. To 
have an overlapping region, φ should be less than 2θ. Also, to consider this overlapping region, 
the sensor readings y for both sensors should be grater than do as discussed before. 

Again, the case analysis that we did for translation in the x direction can be used here by 
replacing ∆x with rφ. This way we can get smaller tolerance areas with certain probabilities. The 
probability that the reading is in the overlapping area depends on the value of the readings and 
on the angles φ and θ.  
 

SIMULATION RESULTS 
 
In this experiment, We demonstrate the use of the tolerance measures discussed earlier. This 
experiment also illustrates the use of the logical sensors concept to implement high-level 
requests which incorporate tolerance measures and time calculations.  

The request which was implemented for this experiment is measure which has the following 
syntax: measure (tolerance, time, preference), where tolerance is the required tolerance with 0 
meaning get the best tolerance, and -1 means tolerance is not important. time is the required 
response time, and again 0 means as fast as possible, and -1 means time is not important. When 
both, time and tolerance are specified, the logical sensor may not be able to satisfy both criteria, 
and this is when preference is used to specify which criteria should be preferred. This request 
returns the resulting tolerance and the time consumed into the same parameters that were sent.  

The following is the output of a program which uses this request to measure a point in front of 
the robot. First it sends a request to get the measure as fast as possible ignoring the tolerance.  

 
Fast response required ... 
!!! minimum time ... 
!!!  current reading is 2071 mm, with tolerance 402.4 in time 0.9 sec. 
Result: distance = 2071 mm, tolerance = 402.4, and time = 0.9 sec. 

 
Second, the program sends a request to get the best accuracy (minimum tolerance), and the time 
is irrelevant.  
Best tolerance required ... 
!!! minimize the tolerance ... 
!!!  current reading is 1536 mm, with tolerance 298.4 mm. in time 0.6 msec. 
!!!  current reading is 1412 mm, with tolerance 274.3 mm. in time 2.5 msec. 
!!!  current reading is 1383 mm, with tolerance 268.7 mm. in time 3.4 msec. 
!!!  current reading is 1350 mm, with tolerance 262.3 mm. in time 4.4 msec. 
!!!  current reading is 1291 mm, with tolerance 250.8 mm. in time 5.6 msec. 
!!!  current reading is 1259 mm, with tolerance 244.6 mm. in time 6.5 msec. 
!!!  current reading is 1215 mm, with tolerance 236.0 mm. in time 7.6 msec. 



!!!  current reading is 1168 mm, with tolerance 226.9 mm. in time 8.7 msec. 
!!!  current reading is 1139 mm, with tolerance 221.3 mm. in time 9.6 msec. 
!!!  current reading is 1091 mm, with tolerance 212.0 mm. in time 10.4 msec. 
!!!  current reading is 1062 mm, with tolerance 206.3 mm. in time 11.0 msec. 
!!!  current reading is 1015 mm, with tolerance 197.2 mm. in time 11.8 msec. 
!!!  current reading is 971 mm, with tolerance 188.6 mm. in time 12.5 msec. 
!!!  current reading is 938 mm, with tolerance 182.2 mm. in time 13.2 msec. 
!!!  current reading is 894 mm, with tolerance 173.7 mm. in time 13.9 msec. 
!!!  current reading is 847 mm, with tolerance 164.6 mm. in time 14.7 msec. 
!!!  current reading is 818 mm, with tolerance 158.9 mm. in time 15.3 msec. 
!!!  current reading is 756 mm, with tolerance 146.9 mm. in time 16.3 msec. 
!!!  current reading is 724 mm, with tolerance 140.7 mm. in time 16.9 msec. 
!!!  current reading is 694 mm, with tolerance 134.8 mm. in time 17.5 msec. 
!!!  current reading is 633 mm, with tolerance 123.0 mm. in time 18.4 msec. 
!!!  current reading is 603 mm, with tolerance 117.2 mm. in time 19.0 msec. 
distance = 1536 mm,  tolerance = 117.2, and time = 19.0 msec. 
Finally, the program specifies both time and tolerance to be met, preferring the time. 
Tolerance required = 150.0, time required = 6.0 msec. 
!!! both criteria are specified ... 
!!!  current reading is 2190 mm, with tolerance 425.5 mm. and time 0.9 msec. 
!!!  current reading is 2101 mm, with tolerance 408.2 mm. and time 2.7 msec. 
!!!  current reading is 2068 mm, with tolerance 401.8 mm. and time 4.1 msec. 
!!!  current reading is 2026 mm, with tolerance 393.6 mm. and time 5.6 msec. 

Result: distance = 2190 mm, tolerance = 393.6, and time = 5.6 msec. 

Figure 8 shows the movement of the robot while taking these measurements. The first request did 
not cause any movement since it required minimum time. The second request caused the robot to 
move forward to minimize the tolerance region. During this movement, the speed of the robot 
decreases to get better accuracy. Finally, the last request also caused the robot to move forward, 
but it stopped before reaching the required tolerance since the time was preferred. 

In this experiment we used only the translation in the y direction to minimize the tolerance. 
However, the other two approaches mentioned earlier could be used to get better results with 
probability measures as well. 
 

CONCLUSION 
 
In this paper, tolerance measures for sonar sensors were proposed and different strategies to 
increase position accuracy were investigated.  An example for applying this control scheme to a 
mobile robot was described along with the simulation results.  We believe that this scheme 
provides more flexible and robust control systems, and allows more modular design for the 
whole control system. It also provides fast response for reaction behavior which is an essential 
requirement in real-time systems. 

The next step to this work is to implement a distributed controller including higher level 
functions for increasing the accuracy of the measured point locations. These function will be 
defined utilizing the different tolerance analysis approaches discussed in the paper.  
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Figure 8: The trajectory of the robot while performing the requests 
 


