
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 1991

Observing A Moving Agent

Ruzena Bajcsy Tarek Sobh
University of Pennsylvania University of Pennsylvania

This paper is posted at ScholarlyCommons.

http://repository.upenn.edu/cis reports/392

Observing A Moving Agent

MS-CIS-91-01
GRASP LAB 247

Ruzena Bajcsy
Tarek Sobh

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

January 1991

Observing a Moving Agent

Ruzena Bajcsy and Tarck Sobll

C; I t ASI' I,al~ora.l,ory

Dcpa.rbmcnt of Comp11t.cr a.nt1 Inforlna.l,ion S,c:icncr

School of Engineering a.nd Applictl Scictlcc

1Jnivcrsit.y of Pcnnsylva.nia., I'liila.tlclpliia, I'A 10104

Abstract

We addrcss tllc problcin of observing a moving agent.. 11i particlrlar, wc ploposc

a system for ol~scrving a. manil)l~labioti plorrss , wlicrc a r o l ~ o t I ~ a n d maiii])ulal,cs

an object. A tliscrctc cvcnl dynamic sysI.cm (DEIIS) frainc w o ~ k is devclo~tctl for

the hand/objcct inlcracbion ovcr t i~r lc ant1 a sta1)iIizing obscrvcr is const,rucbcd.

Low-lcvcl m o d ~ ~ l c s arc dcvclopctl for rrcognizlng kllc "cvcnts" 1ha.t caliscs s ta te

transibioiis wibhitl thc dynamic manipulal ion sysl ,c~n. 'I'llc work rsamil i rs closcly

tllc possibilibics lor errors, mistakes a nrl i~nctrl ,ai~lt , ics in blic manilnrIa.l,ion systcm,

obsctvcr constrtictio~i j)ioccss atitl cvcrib itlr~~l,ification n~cc l lan is~ns . T h e s y s t c ~ n

utilizcs diffcrcnt, trackitig l,cclir~iclr~cs i n ortlcr to obscrvc I , l~r task in a n oc/7vc,

ndaptivr: ant1 gorrl-(lit-cctcrl Inalincr.

IZcywords : Cornpl~bcr Vision, Control 'l'l~coiy, IIccisio~i hllaliing, Discrctc Event 1)yna.mic

Syslcms, Firiile S t a t c Al~l,oiriata, Irnagc I'roccssil~g, Manrr iacburit~g Sys t c~ns , hlIotion Esl,i-

tnntion, 11.o1~olics.

A c k ~ i o w l e d g c i ~ ~ c i l t s : This rescarcl~ \vas s~~ppor(.ctl in 11art 11y Air Forcc AFOSR. Gran1.s 88-0211, 88-

0296; Army/DAAT, Grant. 03-89-C-003JPRI; NSF Cra~ils CISE/(';DA 88-22719, 1111 89-06770; 11A111'A Craiil.

N0011-88-0630 and D~iPonl. Corl~or;ll.ion.

Contents

1 Introduction 4

Discrete Event Dynamic Systems 6

2.1 What is a discrete event dynamic system ? 7

2.2 Modeling . 7

2.3 Stability . 10

2.3.1 Pre-Stability . 10

2.3.2 Sta.bility. 11

2.3.3 Pre-Sta.biliza.bility . 12

2.3.4 Stabilizability . 13

2.4 Observabili ty . 13

2.4.1 Requirements . 14

2.4.2 State Observability + 14

2.5 Output Feedback Stabilizability . 16

2.5.1 Requirements . 16

2.5.2 Strong Output Stabilizability . 17

3 Modeling and Observer Construction 18

3.1 Building the Model . 19

3.1.1 A Grasping Task . 20

3.1.2 A Screwing Task . 23

3.2 Developing the Observer . 24

4 Event Identification 2 6

4.1 Image Motion of the fIand . 26

4.2 Recovering3-Devents . 31

4.3 The Controllable Events . 32

5 Sensor Uncertainties 3 3

5.1 1ma.ge Formation Errors . 35

5.2 Calibration a.nd Modeling Uncerta.inties . 36

6 Irnage Processing Uncertainties 3 8

6.1 Edge Extraction Uncertainties . 39

6.2 Computing 2-D Motion Uncerta.inty . 40

7 Refining Image Motion 4 3

8 Recovering World Events 4 7

8.1 A 3-D Recovery Algorithm . 48

8.1.1 Two-Fra,me Algorithm . 49

8.1.2 Complexity Analysis . 50

8.1.3 Observa,tions . 51

8.1.4 Multi-Frame Algorithm . 51

8.2 0 ther Algori t.hms . 54

8.3 Recovering 3-D Uncerta.inties . 55

9 Refining World Events 5 7

10 Navigating the Observer Autoinaton 58

11 Results 6 0

12 Discussion 6 1

13 Extensions and Future Research 62

References 63

1 Introduction

The problem of observing a, moving agent was addressed in the literature extensively. It

was discussed in the work addressing tracking of targets and, determination of tlle op-

tic flow [3,9,10,19,22,42], recovering 3-D motion parameters of differen t kinds of surfaces

[14,16,27,33,34,40,41], and also in the context of other problems [2,6,7,8,37]. In this work we

try to establish a framework for the general problem of observation, which may be applied

t o different kinds of visual tasks. We establish "intelligent" high-level control mechanisms

for the observer in order to achieve an efficient approacll to visually recognizing different

processes within a specific dynamic system.

We concentrate on the problem of observing a manipulation process in order to illustra.te the

ideas and motive behind our framework. The process of observing a robot hand manipulating

an object is very crucial for many robotic and ~nanufacturing tasks. It is important to know

in an automated manufa.cturing environment whether the robot hand is doing the correct

sequence of operations on an object (or more than one object). I t might be a fact that the

workspace of the robotic manipulator cannot be accesscd by humans, as in the case of some

space applications or some areas within a nuclear plant, for example. In that case, having

another robot "look" a t the process is a very good option. Thus, the observation process

can be thought of as a stage in a closed-loop fully automated system where there are robots

who perform the required manipulation task and some otllcr robots who observe them and

correct their actions when something goes wrong. Typical manipulation processes include

grasping, pushing, pulling, lifting, squcezing, screwing and unscrewing. Visual information

from the observing robots can be the only kind of feedback, or it can bc supplemented by

other kinds, like tactile sensing. In this paper, we address the problem of observing a single

hand manipulating a single object and "knowing" what is the hand doing, no feedback will

be supplied to the manipulating robot to correct its actions.

To be able to observe how a, 11a.nd manipula.tes an object, we must be able to identify how

the hand moves and how the 11andJobject physical rclationsllip evolves over time. An obvi-

ous way of doing this would be to identify the motion vectors a.s scen be the observer. In

other words, identify the two-dimensional vectors in the observer's camera plane and use

these as a cue to know how the objects uncter co~~sideration moves in the three-dimensional

space. T h e problems of recovering the image flow vectors (the two-dimensional motion vec-

tors in the camera plane), and identifying the scene structure and motion have been key

problems in computer vision. Many techniques have heen developed for estimating the im-

age flow [3,9,15,19,22], and to recover the three-dimensional world structure and motion

[14,33,34,36,39,40,41]. Those techniques arc not problem-oriented, they are not restricted to

a particular problem domain, as is the case with our observer construction problem.

Trying to use the above techniques directly to solve our observer problem will not be efficient.

In fact, possibly not feasible to perform in a practical way using the curreilt technology, as

the complexity of the manipulation process increases. Due to the fact that we probably

know a.-priori some information about the allowable (or useful) manipulation processes and

the geometry of the robotic hand, posing tlic problem a s a structure-from-motion vision

procedure is a very naive way of modeling the obscrvcr system. It should also be noted

that the observer will have to be an active one to be able to intera.ct with the ~nanipulation

environment in such a way as to be able to "see" a t all times. The idea of an active observer

was discussed in the literature [2,6], and it was shown that an active observer can solve basic

vision problems in a much more eflicicnt way than a passive one.

We use a discrete event dynamic system as a high-level structuring technique to inodel

the rnanipulation system. 0 ur formulalion uses the knowledge about tlie systcrn and tlie

different actions in order to solve the obscrvcr problern in an eficicnt, stable and practical

way. The model incorporates dinercnt I~and/object rclationsl~ips and tlie possible errors in

the manipulation actions. I t also uses different tracking meclianisms so that the observer

can keep track of the workspace of the manipulating robot. A frame work is developed for

the ha.nd/object interaction over time and a stabilizing observer is constructed. Low-level

modules are developed for recognizing the "events" that causes state transitions within the

dynamic manipulation system. The process uses a coarse quantization of the mani~>ulation

actions in order to attain a n active, adaptive and goal-directed sensing mechanism.

The work examines closely the possibilities for errors, mistakcs and uncertainties in the

ma.nipulation system, observer construction process and event iden,tificatioii mechanisms. We

divide the problem into six major levels for developing uncertainty models in the observation

process. The sensor level models dea.1~ with the problems in mapping 3-D features to pixel

coordinates and tlie errors incurred in t1ia.t process. We identify tliese uncertainties and

suggest a framework for modeling them. The next level is the extraction strwtegy level,

in which we develop models for the possibility of errors in the low-level image processillg

modules used for identifying features that are to be used in co~nputing tlie 2-D evolution of

the scene under consideration and c o m p u t i ~ ~ g the image flow . In the third level, we utilize the

geometric and mechanical properties of the hand and/or object to reject unrea1isl.i~ esti~natcs

for 2-D movements that might have been obtained from the first two levels.

After having obtained 2-D models for the cvolu tion of the hand/object relationship, we trans-

form the 2-D uncertainty models into 3-D uncertairlty models for the structure and motion of

the entire scene. The fourth level uses the equations that govern the 2-D to 3-D relationship

to perform the conversion. The f fth lcvel rejects the improbahlc 3-11 nncertalnty ~nodels for

motion and structure estima.tes by using the e s i s t i ~ ~ g information abo t~ t the geometric and

mechanical properties of tlle moving compo~iel~ts in t,he scene. The sistli ant1 liigl~est level is

the DEDS formulation with unccrtadntics, in which stake transitions and event identificatior~

is asserted according to the 3-D models of uncerta.inty that were developed in tlie previous

levels.

We describe the automaton model of a discrete event dynamic system in the next section

and then proceed to formulate our framework for the lnallipulation process and the ob-

server construction. Then we develop efficient low-level event-identification mechanisms for

determining different manil~ula.tion movements in the system and for moving the observer.

Next, the uncerta.inby levels a.re described in tletails. Some results from testing tlle system is

enclosed and future extensions to the system a.re disc\lssed.

2 Discrete Event Dynamic Systems

In this section we present an overview for the development of a theory for discrete event

dynamic systems (DEDS). Dynamic systems are t~s l~al ly motlelcd by fin it,^ sta.t.e automata

with partially observable events together with a mechanism for ena.bling and disabling a.

subset of state tra.nsitions [26,28,30,31]. \Vc describe n recently developed framework for

analyzing and controlling discrete event dynamic systems [28]. We propose that this model

is a suitable framework for many vision and robotics tasks, in particular, we use thc model

as a high-level structuring technique for our system to observe a robot hand manipulating

an object. The approach used in this frarncwork is a state spacc approach that focuses

on controlla.bility issues for DEDS. We consider the issues o l stability, observability and

sta.bilizability by output feedback within f 11 i s frarncwork.

2.1 What is a discrete event dynarnic system ?

Discrete event dynamic systems (DEDS) are dyna.mic systcnis (typically asynchronous) in

which state transitions are triggered by tllc occurrence of discrcte events in the system. Many

existing dynamic system have a DEDS str~lcture, manufactiiring systems a.nd cornmu~~ication

systems are just two of them. The sta.1.c spacc approarch in represcnting and analyzing

such systems will proba.bly lead to more applications that might bc incorp~rat~ed into the

frarncwork of DEDS. I t will be ass~lincd in the dcvclopment of the state space approach of

analyzing DEDS that some of the cvclrts in the systcrn arc co~~trollable, i.e, can bc cnablcd or

disabled. The goal of controlling DEDS is to c'guide" tlrc beha,viour of the system in a way

tha,t we consider "dcsira.ble". I t is further assuincd that we arc able to observe only a. subset

of the event, i.e, we can only see somc of the cve~lts that are occurring in the system and not

all. In some cases we will be forced to make decisions regarding thc state of the system and

how to control a DEDS based upon our observations only.

In the next subsection we will discl~ss the finite state 1~iodc1 of a DEDS, 'I'llis r c ~ ~ r ~ ~ c i i t a t , i o n of

a, DEDS will be used the following subsections. Tllis ~nodcl will be a si~nplc non-dcterniinistic

finite-space automaton. Grapllical represrntations for IIEDS autolnatons will be ilscd as

exalnplcs to exl>la.isl the different, dcfi~lit~ions and ideas to bc presented. The notions of

stability for a DEDS will be int,roduccd and tliscussctl. MTe t11cn focns on the ql~cst~ions of

observabiliby and state reconst,ruct.ion from intcrmittcnt observations o l the event tra.jectory.

Further, we address the prohlein of stabilization by out1)ut feedback.

2.2 Modeling

The discrete event dynamic systems under consideratio~l can always be modelctl by a non-

deterministic finite-state automata with partially observable and controllable evc11t.s. In

particular, one can make the dist,inct,ion bctwe.cn classical ailtolrlata theory [18,23,25,32] and

our representation of DEDS in terms of the state transit,ions. In classical autornata the events

are inputs to the system, whereas in DEDS the events are assumed to be generated internally

by the system and the inputs to the system a,re the control signals that can enable or disable

some of these events. We can represent our DEDS as the following quadruple :

G = (X, C , U , r)

where X is the finite set of states, C is the finite set of possible events, U is the set of

admissible control inputs consisting of a specified collection of sl~bsets of C, corresponding

to the choices of sets of controllable events thak ca.n be ena.bled and I' 5 C is the set of

observable events. Some functions can also be defined on our DEDS as follows :

where cl is a, set-valued function that specifies the set of possible events defined a t each state,

e is a set-valued function that specifies the set of events t.11a.t cannot be disabled a t each state,

and f is the set-valued function that specifies state transitions from a state under different

events. An output process can 11e forma.lized simply : whenever an event in l' happens we

see i t , otherwise we don't see anything.

Figure 1 : A Simple DEDS Example

We can visualize the concept of DEDS by an example as in Figure 1, the graphical represen-

tation is quite silnilar to a classical finite a.utom;lton. IIere, circles denote sta,tes, and events

are represented by arcs. The first symbol in each a.rc label denotes the event, while the sym-

bol following "/" denotes the correspondil~g oatput (if the event is obscrvablc). Fina.lly, we

mark the controllable events by ":u". Thus, in this example, X = {0,1,2,3), C = { a , P, 61,

r = {a,S), and S is coi~trollable a t state 3 but not a t state 1.

Also d (l) = e(1) = {(r,S), d(3) = {S), e(3) = 4, /(O,/?) = {0,3) etc. A tra.nsition, x +" y,

consists of a source state, x E X , an event, cr E d(x), and a destina.tion state, y E f (2 , a) .

In general, a, DEDS automaton A is a. nondetcrrninistic finite statc antornaton, howevcr, i f

f (x , o) is single valued for x E X then A can be termed as a, deterministic finite state

automaton. A finite string of states, x = xozl ... x j is termed a. - pat11 or a state tra.jectory from

xo if xi+l E f(x;,d(x;)) for a16 i = O... j - 1. Similarly, a finite string of events s = alaa...aj

is termed an event trajectory frorn x E X if 01 E d(x) and a;+l E $(f (x , a l a z ... a i)) for all i,

where we extend j to C* via

with f (x , E) = 2. In our graphical exa.mple (Figure 1)) aPPb is an event tra.jectory.

If we denote a tra.nsition labeled by a by -in, then wc ca.n similarly let jS dcnotc a, string

of transitions s and +* denote any number of transitions, including no transitions. We can

define the range of a state x by

indicating the set of states that can reached from x, we can also define the range of a subset

of states & in X by

An algorithm for computing R(A,Xo) for a.ny Xo c X that runs in 0(1z) where 12 = 1x1 can

be easily formalized as follows :

Let Ro = Qo = Xo and itera.te

Rk+l = Rk U f (Qk, E)
-

~ k + ~ = ~ k + ~ n n k

Terminate when Rk+l = R,k. Then, R(A, Xo) = Rk.

A sta.te x E X is alive if d(y) # for till y E R(A, x). A subset Y of X is termed a live set if

a.11 x E Y are alive. A system A is termed alive if X is a live set.

2.3 Stability

In this section we discuss the notions of stability a.nd the possibility of stabilizing a discrete

event dynamic system. In particu1a.r) we are going to concentrate on stability notions with

respect to the stales of a DEDS automaton. Assuming that we havc identified the set of

"good)' sta,tes, E , that we would like our DEDS to "stay within" or do not stay outside for

an infinite time, the problem would reduce to :

Checking out whether all tra,jectories from the other states will visit E infinitely often.

Trying to "guide" the system using the controlla.ble events in a way such t11a.t the

system will visit the "good" sta.tes infinitely often.

We shall s tart by dcfining and tcsting for diflcrent notions of stability and thcn discuss wa.ys

to stabilize a system. We sllall sta.rt by a.ssuming that the DEDS model under consitleration is

an uncontrolled system with perfect knowledge of the state and event trajectories (c ~ F = 4) ,

to simplify developi llg the definitions and exa.inples.

2.3.1 Pre-Stability

To capture the idea of stability , we can suppose that wc have drcady identified a subset of

states E in X t11a.t returning to E implies bting in a. position to continuc desired behaviour

f r o ~ n that point on. We call dcfine the tlotion of a state in t l ~ e DEDS bcing stable wit11

respect to l;: in two stagcs. The first stage will be the weaker notion and will be termecl

pre-stability. We say that s E X is pre-stable if all paths from x can go to E'in a finite

number of transitions, i.e, no pa.tll from x cnds up in a cycle t11a.t does not go t l~rough E.

Figure 2 : Stability Example

10

In Figure 2, states 0, 2, 3, and 4 are pre-stable, since all transitions from them can goto (0,

3) in a finite number of transitions. State 1 is not pre-stable since it will stay forever outside

E if an infinitely long string of 6's occurs. A definition of pre-stabilit,~ can be formalized as

follows :

Givcn a live system A and some E c X , a stjake x E X is pre-sta.ble with respect to E (or

E-pre-stable) if for all x E X(A,x) such that 1x12 n, there exists y E x such that y E E. We

say that a set of states is E-pre-stable if all its elements are E-pre-sta.ble and a system A is

pre-stable if X is E-pre-stable.

The restriction for liveness can be flexible in the sense that if all the dead states are within

E, then an automaton might still be E-pre-stable. I t follows from tlic above definition that

a state x E X is E-pre-sta.ble iff n: E E or f (x , rl(z)) is E-pre-stable. The following algorithm

computes the maximal E-pre-stable set X , within a system :

Let Xo = E a.nd iterate :

Xk+] = (XIJ(Z, d (~)) C Xk} UXk

Terminate when Xk+l = X k , then X, = Xk.

In Figure 2, it can be noticed that XI = Xz = X, = (0, 2, 3, 4).

2.3.2 Stability

The stronger notion of st,ability corresponds to returning to the set of "good" states E in a.

finite number of transitions following any excursion outside of E . Thus, given E , we define

a state x E X to be E-stable i f all paths go through E in a finite number of transitions and

then visit E infinitely often. As an exa.lz~ple, in Figure 2, where E = (0, 3) , only 2 and 3 are

stable states. State 1 is not stable since the system can loop at 1 infinitely. State 0 although

in E is not stable since the system can make a transition to 1 and then stsays there forevcr,

the same applies to state 1. We can use the previously defined notion of prc-stabilit,y and

define a state to be E-stable i l all the states in its reach are E-pre-stable. 111 Figure 2, 0 and

4 are not E-stable since thcy can reach 1, which is not E-prc-sta.ble. We can define st,ability

as follows :

Given a live A and x E X , x is E-stable iff R(A,x) is E-yrc-stable. A Q c X is sta.ble if aJl

x E Q are stable. A system A is stable if X is a. stable set, from which we can conjecture

tha.t A is E-stable iff it is also E-pre-stable.

2.3.3 Pre-Stabil izabil i ty

Now, we introduce control and reconsider the stability notions discussed before. We try

to "guide" our system or some sta.t,es of it to bcha.vc in a way that we consider desira.blc.

Pre-stabilizability is described as finding a. sta.t,e feedba.ck such that the closed loop system

is pre-stable. We can then define pre-sta.biliza.bility formally as follows :

Given a live system A and some E c X , x E X is pre-stabilizablc with respect to E (or

E-pre-stabilizable) if there exists a state feedl~ack Ii' such that x is alive and E-pre-stable in

Ari. A set of states, Q , is a. pre-sta.bilizable set if thcre exists a feedba.ck law Ii(s) (A control

pattern) so that every x E Q is alive and pre-stable in A,<, and A is a, pre-stabiliza1,le system

if X is a pre-sta.bilizable set.

As a.n example, in Figure 3, state 1 is yrt-sta.bilizable since clisabli~lg y pre-stabilizes 1.

IIowever, disabling y a t stat-e 2 leaves no other dcfincd events a t 2 and "kills" i t , so neither

state 2 or 3 is pre-stabilizable.

Figure 3 : Pre-S tabilizability Example

2.3.4 Stabi l izabi l i ty

Stabilizability is an extension of pre-stabilizability. Stabilizability is described as finding a

state feedback such t11a.t the closed loop system is stable. We can then define stabilizability

formally as follows :

Given a live system A and some E c X , x E X is stabilizable with respect to E (or E -

stabilizable) if there exists a, state feedback li' such that x is alive and E-st,able in AIC. A

set of states, Q , is a stabilizable set if there exists a feedback law I<(s) (a control pattern) so

that every x E Q is alive and stable in AIc, and A is a stabilizable system if X is a stabilizable

set.

Figure 4 : Stabilizability Example

In Figure 4, disabling /3 a t state 2 is suficient to make the whole systcrn sta,ble with respect

to state 0. Disabling y a.t state 1 will help stabilize only state 1, beca,use the systenl call

then continue looping between sta.tes 2 a.nd 3. Disabling P at state 3 will not help stabilize

or pre-stabilize any state.

In this section we address the problem of detcrrnining the clirrent state of the system. In

particular, we are interested in observing a certain sequence of observable events and making

a decision regarding the state that the DEDS automaton A might possible be in. In our

definition of observahility, we visualize a.n inter~nitteilt observation motlel, no direct mea-

surements of the state are made, the events we observe are only those t l ~ a t a.re in r C C, we

will not observe events in E nF and will not even know that any of whicl~ has occurred. State

ambiguities anre allowed to develop (which milst ha.ppen if C # r) but they are required to

be resolvable after a bounded interval of events. This notion of observability ca.n be illustrated

gra.phically as in Figure 5.

1 I I

t t b output String

Perfect state knowledge

Figure 5 : Notion of Observability

2.4.1 Requirements

In developing the theory and examples we shall concentrate on uncontrolled ~nodels of DEDS

automatons with partial knowledge of the event trajectory. Due to the fact that we atre

"seeing" only observable events in r in our system, it is not desirable to have our automaton

generate arbitrarily long sequences of unobservable events in C n F. A necessary condition

to guarantee this is tha t the automaton after rcrnovillg the observa.ble events AJT, must not

be alive. In fact, i t is also essential that every trajectory in AlT is killed in finite time by

being forced into a dead state. It can be seen that the condition for a DEDS automaton to

be unable to generate arbitrarily long sequences of il~~observable events, is that A I ~ must

be D-stable, where D is the set of states tha,t only havc observable events defined (i.e,

D = {X E X (cl(x) n T)).

2.4.2 State Observability

As illustrated in Figure 5, a DEDS is termed observable if we can use the observation sequence

to determine the current state cxactly a t intermittent points in time separated by a hunded

number of events. More formally, taking any suficiently long string, s, that call bc generated

from any initial state x. For ally observable system, we can then f i l lr l a prefix p of s such

that p takes x to a unique state y and the length of the remaining suffix is bounded by some

integer n o . Also, for any other string t , from some initial s tate z', such t*hat t has bile same

output string as p, we require that t Lakes 2' to the same, unique state y.

Figure 6.1 : A Simple System

Figure 6.2 : Observer for the System in Figure 6.1

In Figures 6.1 and 6.2 a simple system a.nd its observer are illustrated. It can be seen that

the observer will never know when will the system be in states 3, 4 or 5, since the events

that takes the system to those states are unobservable (6 / c means that 6 E C nF), namely

6 and y. There are two stakes in the observer whicl~ are a~nbiguous, however, another two

states are singleton states, i.e, when our observer reaches them, we'll know the esact state

that the DEDS in currently in. IIad it been the case that our observer could, for c x a m ~ ~ l e ,

loop forever in ambiguous states, then the DEDS would be unobservable. This leads to the

following formal definition of observability that ties it with the notion of stability :

A DEDS automaton A is observable iff E is nonempty and 0 is E-stable.

where 0 is the observer for A and E is the set of singleton states of 0. It can hc sccu that

the observer in Figure 6.2 is stable with respect to the nonempty subset of statres (0, 2) and

thus the DEDS of Figure 6.1 is observa.ble.

2.5 Output Feedback Stabilizability

In this section we combine the ideas disc~issed in the previous two subsections regarding

observability and stability to addrcss the problem of stabiliza.tion by dyna,mic output feedback

under pas t id observations. In this sect.ion we concentratc on pa.rtia1ly controlled systc~ns with

partial knowledge of the event trajectory. 111 particula.r, our goal is to tlevelop stabilizing

compensators by cascading and a stabilizing state feedback defined on the observer's state

space.

2.5.1 Requirements

To attack the problem of output fcedback stabilization, it should be noticed that we are

actually trying to "ma~iipulate" the system's obscrvcr, in other words, what we lia,ve ava.ila.ble

in a sequence of observable events (the system's ovllmt) and we are trying to use this output

to control the beliaviour of the systcrn using only the events that we can control. It is tllcn

possible to redefine the problem of output feed11a.ck stabilization a s the stabilization of the

observer by state feedback.

The obvious notion of output E-stabilizability (stabilizability with respect to E c X) is the

existence of a cornpcnsator C so t1ia.t the closed-loop system Ac is E-stable. It is possible

that such a stabilizillg compensator exists, such that we are sure t11a.t the system passes

through the subset E inf nitely oftcn (E-stable) btit we nevcr know when the system is in E.

A stronger notion of output feedback stabilizahility would not only requires that the systeln

passes through subset E infinitely often, but also that we rcgula~*ly know 1v11en the system is

in E. In out example and discussion wc shall concentrate on this strongcr notion of out])ut

Sys tern

Observer

Figure 7 : Example for Outpu t Stabilizability

2.5.2 S t r o n g O u t p u t Stabi l izabi l i ty

The basic idea behind strong output stabiliza.bility is that we will know that the system is

in state E iff the observer sta.te is a slibset of E. The fact t11a.t the observer state should be

a subset of E instea.d of having the observer state of interest includes states in E is because

we wa.nt to gmnmn.tee t,ha.t our system in within E. Our cornpensator should then force the

observer to a state corresponcling to a subset of E at intervals of at lllost a. finite integer 1:

observable transitions. We can then formalize the notion of a strongly output stabilizal~le

system as follows :

A is strongly output E-stabilizable if there exists a state feedback I{ for the observer 0 such

that 01(is stable with respect to Eo = { i E Z (i c E }.

where Z is the set of states of the observer.

As an example, considering the DEDS and its observer in Figure 7, where E = (1, 21, we

have to check the observer stability (or stabilize the observer) with respect to Eo , becai~se

this is the only observer stake that is a subset of E. As a, start, we do not know which state is

our system in (as denoted by the state (0, 1, 2, 3}), however, using the observcr transitions

we can see that t o achieve Eo-stability for the obscrver we only need to disable a a.t the

observer state (0, 2). I t should be noted that all the events are observable in this DEDS

automaton.

3 Modeling and Observer Construction

Manipulation actions can be modeled efficiently within a discrete event dynamic systenl

framework. It should be noted that we do not intend to discretize the workspace of the

manipulating robot hand or the movement of the hand, we are merely using the DEDS

model as a high level structuring tecllniqr~e to prcserve and make use of tlle informa.tion we

know about the way in which each manipulation task should be performed, in addition to

the knowledge about the physical linlitations of both the observer and manipulating robots.

We avoid the excessive use of decision struct,urcs and cxha,usbivc scarcl~es when observing thc

3-D world motion and structure.

A bare-bone approach to solving tlle observation problem would have been to try and visually

reconstruct the full 3-D motion parameters of the robot's hand, which would have more than

six degrees of freedom, depending on the number of fingers aad/or claws and 11ow they

move. The object's motion should also be recovered in 3-D, which is coinplica.ted especially

if i t is a, non-rigid body. That proccss should 1)e done in rcal time while the task is being

performed. A simple way of tracking might be to try and keep a fixed geometric relationship

between the observer camera and the hand over time. Ifowever, thc above for~nulat~ion is

inefficient, not needed and for all practical purposes infeasible to compute in real time. The

limitation of the observer reachability and the extensive cornputations required to perform the

visual processing are motives 11ehind formulatii~g the problem as a hierarchy of task-oriented

observation modules that exploits the higher-level knowledge about the existing system, in

order t o achieve a feasible n~eclia.nism of keeping the visual process under supervision.

We do a coarse quantization of the visual manipulation actions which has both cont in~~ous

and discrete aspects of manipulation dynamics. State transitioils witliin the manip~ilation

domain are asserted according to probabilistic models that determine a t different instances

of time whether the visual scene under inspection has changed its state within the discrete

event dynamic system state space. We next discuss building the rnaniyulation model for two

simple tasks, grasping and screwing, then we proceed to develop the observer for these tasks.

Formulating the ul~rertainty models for the state transitions and t l ~ c inter-state continuous

dynamics will be left for the sections that deal with the different iincertainty levels and event

identification mechanisms.

3.1 Building the Model

The ultimate goal of the observation mecl~aaisrn is to be able to kt~olv a,t all (or most) of the

time wha.t is the current 1na.nipulation process and what is tlic visual relationship between the

hand and the object. I t should be noticed that this concept, is very similar to the concept of

observability as defined in the previous section for general DEDS. The fact that the observer

will have to move in order t o keep track of the manipula.tion process, makes one think of

the output feedback stabilizability principle for general DEDS as a rnotlel for tlie tracking

technique that has to be performed by the ol~server's csmcra.

In real-world applications, many manipnlat,ion tasks are pcrforn~ed by robots, iilcluding, but

not limited to, lifting, pushing, pulling, grasping, squcczing, screwing and unscrewiiig of

machine parts. Modeling all the possible tasks and also the possible order in which they are

to performed is possible to do witliin a DEDS state model. The different hand/object visual

relationships for different tasks can be modelcrl as tlie set of states X. Movenicnts of tlie hand

and object, either as 2-D or 3-D motion vectors, and the positions of t11c hand within the

image frame of the observer's csrnera can bc tllought of as the events' set I' that causes state

transitions within the manipula.tion process. Assuming, for the time being, that we have no

direct control over the mar~ ipu la~ t io~~ process itself, we can define thc set of admissible control

inputs U as the possible tracking actions t11a.t can bc performed by the hand holding the

camera, which actually can alter the visual configuration of the manipulation proccss (with

respect to the observer's camera). Furtlicr, wc call tlcfinc a, set of "good" statcs, whcrc the

visual configllration of the manipulation process cnablcs the camera, to keep track and to

know the movements in the system. Thus, it can be secn tha,t the problem of obscrvilig the

robot reduces to the problem of rorming a.n o l ~ t p u t stabilizing obscrvcr for the systern undcr

consideration, which was discussed in details in the previous section.

I t should be noted that a DEDS representation for a maaipulatio~i task is by no mcans

unique, in fact, the dcgree of efficiency dcpcnds 011 thc person who builds the modcl for the

task, testing the optimality of a ~nanipulation lnodcls is an issuc that is to be addrcsscd in

the future. Al~tornating the process of building a motlcl is another issue that will have to

be addressed later. As the observcr identifies the cur~cil t statc of a rnanip~~lat~ion task in a

non ambiguous manner, i t can then start llsiiig a practical and cficient way to determine the

next state within a predefined set, and consequently perfor~u necessary tracking actions to

stabilize t,he observation process with respect to the set of good statcs. Tha t is, the curreilt

s tate of the system tells the observer what to look for in the next step.

3.1.1 A Grasping Task

We present a simple model for a grasping task. The modcl is that of a gripper approaching

an object and grasping it. The task domain was choscn for simplifying the idea of building

a model for a. ~nanipulation ta.sk. I t is obvious that more cotnplica.tcd models for grasping or

other tasks can be built. The example shown here is for illustra.tion purposes.

As shown in Figure 8, thc model rcprcsents a view of the liand %at state 1, with no object

in sight, a t s tate 2, the object starts to appear, a t state 3, tlie object is in the claws of the

gripper and a t state 4, the claws of the g~ ippcr closc on thc object. Thc view as presented

in the figure is a frontal view with respcct to the camera image plane, however, the hand

can assume any 3-D orientation as so long as the claws of tlie grippcr are within sight of the

observer, for examplc, in the case of grasping an object resting on a tiltctl planar stirface.

This demonstrates the continuous dynamics aspects of the system. In other words, different

orientations for the approaching hand arc allowable and observa.ble. State changes occur

only when the object appear in sight or when the hand cncloscs it . The f~on t~a l upright view

is used to facilitate drawing the automaton only.

Figurc 8 : A Motlcl for a Grasping Task

I t should be noted that these states call be consideretl as the set of good states E , since t l~ese

states are the expected diflerent visual configura.tions of a hantl alid object within a grasping

task. States 5 aad 6 represent i~lstability in the system a.s they describe the situation where

the hand is not centered with respect to the camera imaging plane, in other words, the lland

and/or object are not in a gootl visual position with respect to the observer as they tend to

escape the camera view. These states arc considered as "bad" states as the system will go

illto a non-visual state unless we correct the viewing position. The set X = {1,2,3,4,5,6)

is the finite set of states, the set E = {1,2,3,4) is the set of "good" states.

The events arc defined a.s motion vectors or motion vector probability distribntions, a.s will

be described later, that causes state transitions and a.s the appearance of the object into the

viewed scene. The transition from state 1 to state 2 is caused by the appearance of the object.

The transition from state 2 to state 3 is caused by the event that the 11a.nd has encloscd the

object, while the transition from state 3 to state 4 is caused by the inward movclnent of the

gripper claws. The transition from the set {1,2) to the set {5,6} is caused by lnove~nent of

the hand as it escapes the calncra view or by thc increase in depth between the camera and

the viewed scene, that is, the hand moving fa.r away from the camera. The self loops are

caused by either the stationarity of the scene with respect to the viewer or by the continuous

movement of the hand as i t changes orientation but without tending to escape a good viewing

position of the observer. In the next seclion we discus different tecl~niques to identify the

events. The controllable evcnts denoted by ": 1" are the tracking actions required by the

hand holding the camera. to compensate for the observed motion. Tracking t,echniques will

later be addressed in detail. All the events in this automaton arc observable and thus the

system can be represented by thc triple G = (X, C, T), where X is the f ni tc sct of sta.tcs, C is

the finite set of possible events and T is the set of ad~nissible tracking actions or controllable

events.

It should be mentioned that this lnodcl of a grasping task could be extended to allow for

error detection and recovery. Also search states could be added in order to "look" for the

hand if it is no where in sight. The purpose of constructi~ig the system is to develop an

observer for the automaton which will enable us to dctcrltline the current state of the system

a t intermittent points ill time and further more, ena.blc us to use the sequence of events

and control to "guide" the observer into the set of good stales E and thus stabilize the

observation process. Disabling the tracking events will obviously make tllc system neither

stable or pre-stable with respect to the sct E = {1,2,3,4), however, it should be notcrl that

the subset {3,4) is already stable with respect to E regardless of the tracking actions, that,

is, once the system is in state 3 or 4, it will remain in E (as defined by our formulation of the

model). The whole system is stahilizahle w.r.t. E , cna.bling the tracking events will cause

all the paths from any state to go throng11 L? in a finite number of transitions and then will

visit E infi nitely often.

3.1.2 A Screwing Task

The next model we present is one for a. simple screwing task. The task is t11a.t of a gripper

screwing a a object (a, nail for exa,mple). I t is assumed that the c1a.w~ of the gripper a.lrcady

encloses the nail and that contact is ma.inta.ined tllrougl~out the process, tlle rotation is

allowed to be either clockwise or a.nticlockwise.

Figure 9 : A Model for a Scrcwing Ta.sk

As shown in Figure 9, the model represents a frontal view of the liand a t state 1, with the

object between the claws, the liand starts to rotate a t state 2 and 3 with some view of tlie

claws and the object still in sight and the claws are occluded at state 4 wllich represents a sidc

view of the gripper. This specific visual representation was chosen because of the fact that

transitions between states 1 and 3 and the self loop at 3 cannot be coinpensated by a tracking

action due to the physical lilrlitations of the tracking arm, in other words, the observing robot

might not be able to do 360 clegrces rotations around the n~anipula~ting hand, cspccially if

the workspaces of both robots do not intersect and both are fixed, non-mobile robots. As

mentioned before, the frontal upright view with respect to the camera imaging plane in statc

one was chosen only to facilitate drawing the automaton. The hand can a s s ~ ~ m c any 3-11

orientation as so long as the claws in states 1, 2 and 3 are within sight of tlie observer, for

example, in the case of screwing a nail into a tilted wall.

As shown by our model, the automaton tends to keep the frontal view of the hand as long as

possible (as far as the observer robot can rotate), after that the observer will just have to sit

idle until rotation of the hand is trackable again. 1f one define the stable visual state as state

1, then obviously the system cannot be ~ n a d e stable with respect to that state, however, one

can think of a screwing ac1,ion on the whole as a stable sct, sincc the robot hand is always

within sight of the observer and it does not trnd to escape the viewing field. In that case the

set of "good" states E is the same as the set X = {1 ,2 ,3 ,4) , the finite set of states. The

goal of the observer in that case would basically be trying to keep a fronta.1 view as long as

i t can.

The cvent el can be defined as rotations that the observer robot can track and keep a frontal

position of the hand, while ez is the one that makes the observable robot rea.cl~ its "limit"

position where i t cannot rotate around the hand in the same direction any longer. The

rotations es are the untrackable rotations, whicl~ lie bcyond the reachable workspace of the

observable robot. The event c4 can be clcfined as the event that causes thc visual scene t o

be a side view of the gripper.

3.2 Developing the Observer

In order to know the current state of the lnanipulatiou process wc need to observe the

sequence of events occurring in the system and make decisions regarding the state of the

automaton, state ambiguities are allowed to occur, however, they are required to be resolvable

after a bounded interval of events. An observer, as defined in the previo~ss section, have to be

constructed according to the visual systcm for which we devclopcd a DEDS model. The goal

will be to make the system a strongly 011 tpnt stal~ilizal~le one and/or construct an observer

to satisfy specific task-oriented visual requirements that the user may specify depending on

the nature of the process. It should be noticed tllat events can be asserted with a specific

probability as will be described in the sections to come and thus state transitions can be made

according to pre-specified thresholds that cornplirncnts each state definition. In the case of

developing ambiguities in deterrnii~ing current and future states, the history of evolution of

past event probabilities can be used to navigate backwa,rds in the observer automa.tfon till a

strong match is perceived, a fa.il sta.te is reaclled or the initiai ambiguity is asserted.

Figure 10 : Observcr for thc Grasping Systcm '

As a n example, for the model of the grasping task, an ol>servcr can be formcd for the system

as show11 in Figure 10. It can be easily seen tliat the syst,eln can be made stable with respect

to the set Eo as defined in the previous scction. At the start, the state of the system is

totally ambiguous, however, the observer can be "g~zided" to the set Eo consisting of all the

subsets of the good states E as dcfinecl on the visual system model. It can be seen that by

enabling the tracking event from tile state (5, 6) to the state (I , 2), all t,hc system can be

made stable with respect to Eo and thus the system is strongly output stabi1izal)le. The

singleton states represent the instances in time wherc thc observer will bc able to determine

without ambiguity the current state of the system.

In the next sections we shall elaborate on defining the different events in the visual ~nanip-

ulation system and discuss different techiliques for event and state identifica.tion. We shall

also introduce a framework for conlput,ing the uncertairrty in determining the observable vi-

sual events in the system and a method by which the uncertainty distribution in the system

can be used to efficiently keep track of the different observer st-ates and to navigate in the

observer automa,ton.

4 Event Identification

In this seclion we discuss different techniques for calculating tlie "events" tliat causes state

transitions within the model t1ia.t we disc~~ssed in the previous section. We introduce the

concept of uncertainty in recovering the visual actions of the manipulation proccss and for-

mulate a way of using the uncertainty in the system in an eficient recovery mechanism.

Using the formulation in tlie previous scction, it caa be shown, from the examples uscd in

modeling the manipulation proccss, that the events that camuses state transitions are either

primitives like specific 3-D moveinents of tlre manipulating hand and/or events like "there

is an object now in view", "the hand has enclosed the objcct" and so 011. Tlie events that

are supposed to be identified and recovered a.b different states of the observer automaton are

highly dependent on the current state in the observation process. Thus tlic obscrver tends

to "look" a t specific actions a t clifferent instsarnccs of time.

We next discuss techniques to be uscd in identifying the 3-D motion of tlic ~na~nipulation

hand and/or the object, which are events tliat arc always important to recover in order to

enable tlie observer to navigate it1 the aut,omaton. The process is startcd by identifying the

manipulating hand and the object (if i t exists) within the observer's viewing window. We

then proceed to develop a.n algorithm for dctcclilig tllc two-dimensional motion vectors of

the hand on the observer's camera plane. Overall motion estilnation and different tracking

strategies are then developed in order to be able to stabilize tlie observer in tlic inost eficient

way.

4.1 Image Motion of the Hand

In order to be able to identify how the manip~la~t ing hand is moving within a grasping task,

we use the image motion to estimate the ha.nd movement. This task can be accomplisl~cd by

either feature tracking or by computing the f111l optic flow. Feature tracking seems to be a

good option for determining the hand motion, especially since the same hand will proba.bly

be used tlirougliout tlie manipulation process, and if tlie system is to be ported to another

manufacturing environment, then the interface that tracks specific features can be changed

while maintaining modula.rity. On the other hand, determining the full optic flow seems to

be essential for computing the object motion, as we might not know in advance any sha.pe

or material information about the objects t,o be ma.nipulated.

Many techniques were developed to estimate the optic flow (the 2-D image motion vectors)

[3,9,15,19,22,42], we propose an algorithm for calculating the image flow and then we discuss

a simpler version of the same algorithm for real time detection of the 2-D motio~i vectors. As

a start , we can use a simple two-dimensional segtnentation scheme in order to identify the

hand and the manipula.ted object within the ca.mcra view. The input image is tl~resholded,

and all the "objects" within an image are identified. An objcct is simply cha.racterized by

a region with a, space of a t least one pixel stlrrounding it from every where, thus regions

with holes can be easily recognized using this technique. An edge tracer can be used for this

purpose. We can assume that the largest object in the figure is the lland and the second

largest object is the manipulat.ed object, or we ca.n make our decision built on the knowledge

we have regarding the geometry of the 1la.nd and/or the object. As mentioned before, specific

features can be identified, for cxample, the corners, or have a picce of paper with specific

features stuck on the ha.nd.

h a

Figure 11 : Identifying the SSD Optical Flow

The image flow detection technique we use is based on the sum-of-squared-differc~rces optic

flow. We consider two images, 1 and 2 as shown in E'ignre 11. For every pixel (x, y) in

image 1 we consider a pixel area N surrounding it and search a neighboring area ,S' to seek

a corresponding area in ima.ge 2 such t11a.t tlic sum of squared diffcrerlces in the pixel gray

levels is minimal as follows :

SSD(L, g) = ?in C [E(x + Ax, y + Ay) - C (i + Ax7 6 + ay)12
i , y € S

A x , A y € N

The image flow vector of pixel (x, y) then points from thc ccnter of N in the first image to

the center of the best match in the second image. The scarch area S should be restricted

for practicality measures. In the ca.se of multiple best matches, we ca,n use the one which

implies minimum motion, as a heuristic fa.voring small movements. I t should be noted that

the accuracy of direction and magnitude of the optic flow dctcrmina.t,ion depends on tlie sizes

of the neighborl~oods N and S .

There axe three basic problclns with this simple approach, one is that the sum of squared

differences will be near zero for all directions wherevcr the gra.yleve1 is relatively uniform, tlie

second is that it suffers from the so-callcd "aperture problem7' even if thcre is a significant

gra,ylevel variation. To illustrate this point, consider a, vertical cdge l~lovilig to the sight by

one pixel dista~ice, and suppose the N window size is 3 x 3 pixels and thc S window size is

5 x 5 pixels, tthe squared-differences at an edge point rcachcs it,s ~naxi~illinl for t,ltrec directjons

as indicated by the vectors (in piscl displacements); (1,0), (1, -1) and (I , I) . Figurcs 12.1

and 12.2 illustrates the aperture problem. The third problem is that the schemc will only

determine the displacement to pixel accuracy.

Figure 12.1 : T h e Aperture Problem Figllrc 12.2 : Normal Flow Estimation

T h e direction of motion of edge E cannot be

determined by viewing E through the aperture A

We solve the first problem by estimating the motion only a t the hand or object pixels (as

determined by the two-dimensional seglnen tat ion scheme) where the intensity changes signif-

icantly. The Sobel edge detector is applied to the first image to estiinate the edge magnitude

M (x , y) and direction D(x, y) for every pixel :

where Ez and E, are the partial deriva,t,ives of the first image with respect to x and y,

respectively. The edge direction and magnitude is discretized depending on the size of the

windows N and S. The motion is then estilnated a t only the pixels where the gradient

magnitude exceeds the input thrcsholtf value. Motion ambiguity due to the aperture problem

can be solved by estimating only the normal flow vector. I t is well known that the mot,ion

along the direction of intensity gradient only can be recovered. Then we evaluate the SSD

functions a t only those locat,ions that lie on the gradient directions and choose the one

corresponding to the minimal SSD, if more than one minimal SSD exist we can choose the

one corresponding to the slnallest n~ovemcnt, as described above. The flrll flow vector can

then be estimated by using the following equation which relates the normal flow vector v',,,

to the full flow vector v'.

This method works under the assumption that the hand image motion is locally constant.

Solving the over-determined linear system will rcsiilt in a solution for the full flow. The least

square error of the system ca,n help us to decide whether the assumption is a reasonably

valid one for determining the event that caused the transition in the DEDS. On the other

hand, full flow deterinination can be performed for small clusters of points in the image and

a number of full flow esti~nates is then used for 3-D recovery.

To obtain sub-pixel accuracy, we can fit a one-dimensional curve' along the direction of the

gradient for all the SSD values obtained. A polynomial of the degree of the nutnber of points

used along the gradient can be used to obtain the best precision. IIowever, for an S window

of size 7 x 7 pixels or less and an N window of size 3 x 3 or so, a quadratic function can

be used for eficiency and to avoid optimizational instabilities for higher order polynomia,ls.

Subpixel accuracy using a quadratic function is shown in Figure 13. Tlle subpixel optimum

can be obtained by finding the minilnu111 of the function used and using the displacement a t

which i t occurred as the image flow estimate. To avoid probable disconti~iuities in the SSD

values, the image could be smoothed first using a gaussian with a small variance.

Figure 13 : Subpixcl Accuracy for Optical Flow

A simpler version of the above algorithm can be implemented in real-time llsillg a multi-

resolution approach [42]. We can restrict the window size of N to 3 x 3 and that of S

to 5 x 5, and perform the algorithm on different levels of the gaussian image pyra-mid. A

gaussian pyramid is constructed by the successive applications of gaussian low-pass filtering

and decimation by half. The pyramid processor, PVM-1 is capable of producing complete

gaussian pyramid from a 256 by 256 image in one video frame (& of a, second). Maxvidco

boards can be used for the simultaneous estilnation of image flow a t all the levels o l the

pyramid for all the pixels. Ilnagc flow of 1 pixel a t the second lcvel would correspond to

2 pixels in the original image, 1 pixel displacement a t the third level would correspond to

4 pixels in the originad image, and so on. The lcvel with the srnallest least square fitting

error of the normal flow can be chosen to get the full flow and the motion vector is scaled

accordingly. This method is crude in the sense that it only allow image flow values of 1,2,4

or 8 pixel displacement a t each pixel, but i t can be used for detecting fast rnovcments of the

hand.

By either using a flow recovery algorithm or a feature identif cation a.nd tracking algorithm,

we end up having a set of v a l u ~ s for 2-D displacements of a nulnbcr o l pixels. The problem is

how can we model the uncertainty in those 2-D estimates, which arc to be used later for 3-D

parameter recovery. For example, if the estima.te is - for a specific 3-D feature - that pixel

(x,, yJ) has moved to pixcl (z,, y,), then the problem reduces to finding space probability

distributions for the four indices. The sensor acquisition procedure (grabbing images) and

uncertainty in image processing mechanisms for determining features are factors that should

be taken into consideration when we compute the uncertainty in the optic flow. In scctions

5, G and 7 we discuss these probltms in deta.ils.

4.2 Recovering 3-D events

One can model an arbitrary 3-D motion in terms of statiollary-scene/moving-vitwcr as shown

in Figure 14. The optical flow a t the irnagc plane can be related to the 3-D world as indicated

by the followillg pair of equations for each point (x , y) in the irnagc plane [27] :

where v, and v, are the ima.gc velocity a t image location (2 , y), (V,y, IfI., Ifz) and (Rr;, R y , R z)

are the tra.~lslational and rotational velocity vcctors of the observer, and Z is the unknown

distance from the ca.mera to thc objcct.

Figure 14 : 3-D F~rtnula t~ion for Stationary-Sccnc/Moving-Viewer

In this system of equations, the only knowns are tlle 2-D vectors v, and v,, if we use tlie

formulation with uncertainty then basically tlie 2-D vectors are random variables with a

known probability distribution. In case that tlie real 3-D rela tionships between feature

points (on the hand) are known, then recovering tlie absolute depth is a simple process, The

equations can then be be formalized, in case that that the 3-D features lie on a planar surface,

as follows :

where 2, is tlie absolute depth, 1, ancl q are the planar surface orientations. It should

be noticed that the resulting syste~n of equations is nonlinear, however, i t has some linear

properties. The rotational part, for example, is tots-lly linear. In section 8 we discuss different

methods for solvii~g tlie system of equations and thus recovering the 3-D parameters in real

time with and without uncert a,in ty formulation.

A part of the events definition, as melitioned before, is the recognition of the existence of

an object, for example. In other words, identifying objects in the visual scene and not

only recovering 3-D motion. Orientation of the object relative to the obscrvcr's camera and

its shape can always be asserted by a simple 2-D segmentation strategy as nientioned in

the discussion about computing tlie 2-D motion vectors. A data base of different shapes and

orientations for different sized objects with tlie associa.ted state that they rnay be ~nanipulated

in may be used and updated 11y the system. Correlation-based ma.tching techniques can be

used to compare 2-D object represent,ations, while moment computations are used to scale,

shift and re-orient the shapes to he correlated. New objccts can still be recognizecl a.nd stored

in this data base to facilitate future accesses.

4.3 The Coiltrollable Events

The only kind of control inputs that can be supplied to the observer robot are tlie tracking

actions. Depending on the nature of the ma.nipulatioii process,, the observer lias to keep

track of the hand and object within tlie camera image plane in such a wa.y so as to be able to

observe the process. The intelligent tracking colltrol is supplied by the DEDS formulation.

Simple-minded tracking ideas, like kecping fixed 3-D relation between tlie ca.mera and the

manipulating a.gent are not to be used in our system. The manipulation action might be a

simple one that does not require complex tracking, such as screwing and unscrewing, however,

more complex events, where the ha.nd may occlude the ma.nipula.tion process, or when the

hand starts movir~g away from the observer, might suggest the need for complex tracking

mechanisms, including translations and rotations of the observing robot hand on which the

camera is mounted.

A subset of the three-dimensional motioil and structure parameters would have to be cal-

culated using two or more frames [14,36,39,41]. The size of the subset will depend on the

expected kind of 3-D motion, as the current state of the DEDS system will specify. Our

system needs to track the object while using all the six degrees of freedom of the observer

robot in order to position the observer a.t the best feasible position a t clifferent states of the

automaton. Using rotations only to follow the end effector of the manipulating robot is not

sufficient for the stabilizing observer.

Two kinds of tracking mechanisms can be used, in the first kind, the two images on which

the motion estimation algorithms will be used, will be taken while the camera is stationary

and then the camera will move and the process will be repeated after the carnera stops. The

observer movement will be a "jerky" one. Another scllelne ca.11 be used where the camera can

grab images while the robot arm holding it is moving, in this case one should co~upensate

for the moving arm before calculatii~g the image flow of the hand antl/or object. Thus, the

problem reduces to finding the image flow due to the camera movement using the stationary-

scenc/moving-viewer 3-D formnlation. In the absence of translations, for example, we can

compensate for the rotational part in a very fast and eficient way. Compensa.tion will have

to be performed before using the structure and motion recovery algorithms. Velocity control

for moving the observer's camera can be used to match the moving agent's speed.

5 Sensor Uncertainties

In this section and the next two sections we develop and discuss modeling the uncertainties in

the recovered 2-D displacement vectors. As meiltiolled in the section describing techniques

for recovering the image flow, the uncertainty in the recovered values results from sensor

uncertainties and noise and from t,hc irnage processitlg techniques used to extract and track

features. When dealing with measurements of any sort, it is a1wa.y~ the case t11a.t the mea-

surements are accompanied by some error. Mistakes also occur, where mistakes are not large

errors but failures of a system component or more. A clcscription of errors, mistakes and

modeling them can be found in [4,5].

Aberrations Lens Non-uniform contrast

transfer function

CCD dlii Cross-talk
Manufacturing blemishes
Shot noise

Frame butfer '7 Different clock speed
than cameras

Host

Figure 15 : Image formation.

In this section we discuss errors in ima,ge formation. The observer robot uses a camera to

grab and register images of the manipula.tion system, so we need to know errors in ma.pping

from the 3-D world features t o the 2-D domain which we use in forming 3-D hypothesis ahout

the task under supervision. The a.ccura.cy, precision and modeling uncertainty of the camera

as our sensor is an important issue and the first step towards forming a, full ur~ccrtainty model

for recovering the 3-D events in the observer automaton.

In Figure 15 (redrawn from [5]), a model of the image formatioll process is illustrated,

which lists some salient features of each colnponent. As a lot of the image processing a.1-

gorithms compute derivatives of the intensity function, noise in the image will be amplified

and propagated throughout the observation process. The goal of this treatrnent is to fixld a

distribution for the uncertainty of rna.pping a. specific 3-D fea.ture into a, specific pixel value.

In other words, if the feature 2-D position wa.s discovered to be (i , j) , then the goal is to find

a 2-D distribution for i a11d j, assuming that there is no uncertainty in the technique used

to extract the 2-D feature, the tecllnique's uiicerta.inty will be discussed in the next section.

The end product of modeling tlie sensor unc~rta.iuty is to be able to say a sta,tement like :

"The 3-D feature F is located in the 2-D pixel position (i , j) with probability pl or located in

the 2-D pixel position (i, j + 1) with probability p2 or given that tlie registered location is

(I , m), such that pl + p 2 + +pn = 1, and ,A error in the 2-D feature recovery rnecha.nism."

5.1 Iinage Forlllatioll Errors

The errors in the image formation process are basically of two different kinds. The first type

is a spatial error, the other type is a temporal error. Tlle spatial crror due to the noise

characteristics of a CCD transducer can be due to luany reasons, among which arc dark

signatures and illumination signa.tures. The technique to be used is to take a large number

of images, we can denote the image intensity filnction as a. 3-D fi~nction I(?/,, v,2), with spatial

arguments u and v and temporal argument t . The sample mean of the image intensities over

N time samples can he denoted by T(u , v).

The spatial variance in a 5 x 5 neighl~orl~ootl of the means is computed by:

The dark signature of the camera can be determined by computing T(u, v) of each pixel with

the lens cap on. It will be found that a small ni~mber of pixels will 1ia.ve non-zero mean and

non-zero variance. The specific pixel loca,tions are blemished and should be registered. The

uniform illumination is computed by placing a nylon diffuser over the lens and computing

the mean and variance. It will be noticed that due to digitizing the CCD array into a pixel

array of different size, and the difference in sa,~nple rates between the digitizer and camera,

the border of the image will have different mean and variance from the interior of the image.

Some "stuck" pixels a t the location of the blemished pixels will also be noted. The contrast

transfer function will also be noted to vary a t diflerent distances from the center of the lens.

Temporal noise characteristics can also be identified by taking a number of experiments and

notice the time dependency of the pixels intensity function. 111 our treatment and for our

modeling purposes we concentrate on the spatial distribution of noise and its erect on fiildirig

the 2-D uncertainty in recovering a 3-D feature loca.tiot~ in the pixel array.

5.2 Calibration and Modeling Uncertainties

Methods to compute the translation and rotation of the camera with respect to its coordi-

nates, as well as the camera para.meters, such as the focal length, radial distortion coeffi-

cients, scale factor and the image origin, have been dcvcloped and discussed in the literature

[8,21,37]. In this section we use a stattic camera calibra.tion tecllnique to 111otle1 the uncer-

tainty in 3-D to 2-D fcaturc locations. In particular we use the scqucncc o l steps 11sccl to

transform from 3-D world coordinates to computer pixel coordii~ates in order to recover thc

pixel uncertainties, due to the sensor noise characteristics described previously.

As shown in Figure 16, the sequence of steps is used for a. cop1ana.r set of points in order

to obtain the rotation and translatioil matrices, in addition to the ca.mcra. parameters. The

input to the sys te~n are two sets of coordinates, (X j , l j) , tvhich a.rc t,he cornpuler 2-D pixel

ima.ge coordinates in frame memory a.nd (x,,,, y,,,, z,,,), whicl~ are the 3-D world coordinates

of a set of coplanar points impressed on a piece of paper with known inter-point distances.

A discussion of the exact n~athematical formulation of the inter-step c~mputa~t ions to find

all the parameters can be found in [a].

(x z ~ , ytU, 2,) 3-D world coordinaies

step 1

Rigid body tra.nsforma.t.ion from (x ,,,, y ,,,, z,,,) to (z, I/, z)

Paramctcrs t o bc ca1ibra.lcd : II. a.lltl 7'

I
(x, y, z) 3-D ca.mcra coortlina.tes

Step 2

Perspective projection with tllc p in Ilolc gcomct,ry

Paxameters l o bc ca1ibra.tcd : f

I
(X d , 12) Dist.ortet1 image coordina.tfcs

Step 4

T V scanning, sa.~npling a.nd conl)~ubcl. ac(l l~ is i (, io~~

Paramctcrs t o \,c ca.librntcrl : scale r;lct,or S, and (C,,Cy)

(XI, 1'1) Cornpu tcr imagc coortlin a,t.r.s i n fra.me nicmory.

Figure 16 : T h e Four-Steps Transforma.t,ion from 3D Worltl Coordina.tcs

t o Computer Ilnagc Coortlinatcs

Our approach is to trea.t the wholc camera systcnl as a black box and make input,/output

measurements and develop a model of its pa.ra~nctric behaviour. The next step is to utilize

thc recovered caincra parameters ant1 t,hc nu~nbcr 01 3-D points wllich wc created in orrler

to formulate a distribution of thc 2-11 nnccrta.inty. The points used in calibration ant1 latcr

in recovering the distribntion call be tlle actual 1ea.tures on the robot hand that are to be

tracked and thus providing a similar cxperimeiltal cnvironmcnt to tllc one that the observer

will operate in.

The strategy used to find the 2-D uncertainty in the features 2-D representation is to utilize

the recovered camera paralncters and the 3-D world coordina.tcs (z,, y,, 2,) of the known set

of points and conlpute the corresponding pixel coordinates, for points distributed throughout

the image plane a nu~nber of times, find the actual fcalure pixel coordi~la.tcs and construct

2-D histograms for the displacements from the rccovcred coordinates for the expcrimcnts

performed. The number of the experirne~lts giving a certa.i11 displacemcnt crror would bc

the z axis of this histogram, while the x and y axis are thc displaccnient crror. Diffcrcnt

histograms call be used for different 2-D pixel positions tlistrihutcd throughout tllc iinage

plane. The three dimensiona.1 histogra~n fullctions are then normalized such that the volunie

under the hist0gra.m is equal to 1 uriit volume and the reslilting normalized function is iised

as the distribution of pixel displacemcnt error, thus modeling thc sensor unccrtai~ity. The

black box approacl~ is thus used to modcl errors in a sta.tistica.l sense.

6 Image Processing Uncertainties

In this section we describe a tech~liquc by wllicll dcvelopi~~g uncert,ainlirs due to the irnagc

processing strategy can be modeled. In acldition, we cnd the discussion by combining both

the sensor uncertainties developed in the previous scction and the inodcls developed in this

section to genera.te distribution models for the unccrtainty in estimating the 2-D motion

vectors. These models are to be used for determining the full uncertainty in recovering t,hc

3-D events that causes state transitions between states of thc obscrver automaton.

We start by identifying some basic ineasures and ideas that arc ilsetl frcqnently to recognize

the behaviour of basic image processing a.lgorithms ant1 tllcn proceed to describe the tcch~lique

we use in order to conipute the crror ~notlel in locating certain lcaturcs from their 2-D

represelltation in the pixel array. We concent.rate on modeling the error incurred in extra.cting

edges, as edge extraction is a very popular mccllanisn~ that is used for both identifying feature

points on the ma,nipulating hand and also for computing 2-D contours of the object under

supervision. When we disclsssed flow recovery techniques before, i t was discussed in tletails

that the optic flow recovcry algorithm sing 1oca.l matclling works well for the ii~teilsity

boundaries and not for the inside regions.

6.1 Edge Extraction U~lcertaiilties

Edge extraction strategies and methods to evaluate their performance qualitatively ant1 quan-

tatively have been presented and discussed in tlle literature [11,13,24,29]. There are sna.ny

types of edges, ideal, ramp and noisy edges as show~r in Figure 17 axe only tllrce of them.

Different curvatures in the edges also constitute aaother di~nension to 1)c taken into consid-

eration when it comes t o asserting the types of edges t1ra.t exist.

Noisy Edge Ra.mp Edge Ideal Edge

Figure 17

The goal of developilig the error lllodcls for edge cstractiorl to to be amble to say a s ta tc~ncnt

like : "Given that the 2-D feature recovered using the edge recovery ,S is in pixel position

(2, g), then there is a probability that tlre feature was origirrally a t pixel position (zt 1, I/) with

probability pl or etc. due to the noise in the pixel image, such that pl t p2 t t p, = 1."

The problem is t o find the probabilities.

I t should be obvious that there may be different types of i~oises and also different levels of

those types that might vary at different locations in the sensor image plane. This adds to

the different models that we might haeve to construct. Our a.pproa.cl1 is to use ideal, t1ia.t

is, synthesized edges of different types, locations and also orientations in image fra.mes then

corrupt them with dificrent kintls ant1 lcvels of noises. We know the ideal eclgc points from

the ideal irnage, for which we shall use the edgc detector that is to be used in the observer

experiment. The corrupted images will then be operated ~ ~ p o n by the dctcctor and the edge

points located. The edge points will differ froin the idca,l i~nagc cdgc points. rIllle 1)rohlenl

reduces to finding corresponding edgc points in corrilptcd and ideal images then finding the

error along a large number of edge points. A 2-D histogram is tllen constructed for the

number of points with specific displacement errors from the ideal point. The volume of

the histogram is thcn normalized to be equal to 1, t,lle resulting 3-D function is the 2-D

probability density function of the error of displaccrr-rents.

In Figure 18, an ideal box is drawn, then corrilptcd with a.n adclitivc ga.ussian noise with a

equal to 3, 10, 20, 30 and 50 respectively a.nd then the edgcs conlputed a.s shown. 111 the box

there are four different kinds of ideal edges (different oricnta.tions with the object inside or

outside of the background). The corrcspondcnce between edge points in the corrupted and

ideal is established by choosing the point with the ri~,iizimu~r!dist,a.nce from tlle ideal ctlgc point,

S U C ~ Z that i t does slot correspond to anot,hcr ideal edge point. Thc 11istogra.111 is constructed

for each edge and then normalized. For practicality measures, the process can be repea,tcd for

orientations differing by 15O a,nd tlie set of distributions preserved. Whenever tlie observer

automaton deals with a specific edge while extracting features, the corresponding distribiltion

is referenced.

6.2 Computing 2-D Motion Uncertainty

In this sectioil we describe how to combine scnsor a.nd strategy error modcls to compute

models for the recovered image flow values. To simplify the idea, lct's assume that we 11a.v~

recovered a specific feature point (x i , yl) in an image grabbed a t tirrle instant t and t h ~

corresponding point (xz, yz) at time t $1. The problei-rl is to figure out the distribution of I),.

As an example, to explain the procedure, lct's assurne that fronil the 3-D sensor distribution

we have have cornputed the marginal dcnsity function of the x coordinate of z l in the point:

where R is all the possible y values within tile sensor uncertainty model.

Figure 18 : Edge Detection Results for Different Noise Levels

41

The same process is applied for the strategy distribution and another function is recovered.

To simplify things, lets assume that both distributions looks like the distribution in Figure 19,

that is, there is an equal probability equal to 4 that the x coordinate is the same, or shifted

one position to t l ~ e left or the right. Cornbini~lg both distributions in a filtering-through

process would produce the distribution shown in Figure 20, which is the error probability

density function of having the 3-D feature x 2-D coordinate in the recovered image 2-D x

position. Further more, assume that x2 distribulion is the sa,me.

- 1 0 1

Figure 19 : Distribution of the s-coordina.te

Figure 20 : Combined Sensor a,nd Stratcgy Distribution

The proble~n reduces to finding the distribution of tllc optic flow x component, using these

two combined distributions. As an example, if xl = 10 aald 22 = 22, then all probability

statements can be easily computed, a set of some of these probability statement is shown :

P(v, = 8)=P((z l = 12) A (x2 = 2 0)) ~ : x i=&

Consequently, all distributions and expected values can be computed from the combination of

the sensor level and strategy level uncertainty formulation. Those flow models are tllen passed

to the higher levels for 3-D recovery. In the next section we discuss a method for refining the

measured 2-D motion vectors and we then proceed to formulate t,he 3-D modeling of events

as defined by the observer autoniaton.

7 Refining Image Motion

In this section we describe a method to refine the recovered 2-D motion vectors on the

image plane. Ilaving obtained from the sensor and extra.ction strategy 1incerta.inty levels

distribution estimates for the i~nage flow of the diffcreiit features, we now try to eliminate

the unrealistic ones. We concentrate on the flow estimates for the motion of the inanipulating

hand and develop a. technique that is to be used during the observation process as a means

t o reject faulty estimates. Faulty estima,tes can results from noise, errors or ~ilistakes in

the sensor acquisition process, ~naniplilation or visual problc~ns like occlusion, modeling the

uncertainties in the previous two levels ma,y still leave rooin for such anomalies.

We assume that the features to be tracked on the hand lie on a planar surface or that

segmenting the hand as a polyhedra, object into planar surfaces is simple, although the mod-

ification would be very simple to allow for arbitrary 3-D positions of the feature distribution.

Since we know a-priori some informa.tion ahout the inecha.nica1 capabilities and limitations

and geometric properties of the]land, also about the rate of visual sa~npling for the observer,

since we actually control that , we might be a.ble to assert some limits on some of the visua.1

parameters in our system.

To illustrate the idea behind the approach, consider Figure 21, assume all the curves are 2-D

parabolic functions y = ax2 + bx + c, if the set of dat,a points a.re as shown in the figure, thcn

a least square error fit will produce the function D. However, if we linow some upper and

lower limits on the values of the cocficients a, b and c then we might be able to construct

an upper and lower function pa.ra.bolas A and C as a.11 enclosing envelope, outside which we

can reject all the da.ta, points. In that casc, we can do a fit for the points that lie inside the

envelope and obtain a more realistic function as shown by the curve 13.

X

Figure 21 : Fitting Para.bolic Curves

The situation for rejecting estimates for the image flow is not rnuch different. We know

equations that govern the bellaviour of the image flow as a function of the structure and 3 - 0

motion parameters, as follows :

Which are second degree functions in .z and y in three dimensions, v, = j l (x , y) and v, =

f45, Y).

In addition, we know upper and lower limits on the coeflicients p, (I, ITx, I+, Ifz, ax, Or*,

Q Z and Z,, a.s we know that the mecl~a~nical abilities of the robot a.rm holding the hand will

make the relative velocity and distance between the camera impossible to exceed specific

values within visual sampling timing period. So the problem reduces to constructing the

three dimensional envelopes for v, and v, as the worst case estimates for the flow velocity

and rejecting any ineasured values that lie outside that envelope. Figure 22a indicates the

maximal v, tha t can ever be registered on the CCD array of the camera, the x and y are in

millimeters and the x - y plane represents the CCD image plane, the dcpth Z is the maxinlal

v, in millimeters on the CCD arrasy that ca.n ever be registered. Figure 22b indicates the

minimal v,, it ca.n be iloticed that they are sym~netric duc to the syrnmetry in the limits of

the coefficients.

Figure 22.a : Maximal v, Figure 22.b : Minimal v,

-* 'I-

n . , -".'

Figure 22.c : Maximal Flow Ma.gnitude
Figure 22.d : Minima.1 Flow Ma.gnitude

As an example, wc write the equation governing t,hc ~ua,xinlum v, value in the first qiladra.nt

of the x - y plane (zf, y+).

where the subscripts s and 1 denote lower and uppcr limits, respcctivcly. At first sight

the problem of determining the maximum value of v, seems to be a constrained non linear

optimization problem, which is true, howevcr, assuming that the upper and lower limits of

the coefficients are equal in magnitude and opposite in directions (except for Z,, which is

used only as 22) makes the input to the n7nx and mir~ fiinctiolls in the a.bove equations

always equal and thus providing one more degree of frcedom in choosi~ig the parameters and

making the choice consistent throughout the equation. Thus the problem I~ccomes simply to

write eight equations as the above one for each of v, and v,, to draw thc function in each of

the four quadrants for maximum and mi~linlurn envelopes. We shall not rewrite the sixteen

equations here, but we show the rcsult,~ for v, in Fjgurcs 22a and 2211, Figures 22c and 22d

are the maximum and minilnum ma,gnitude m(x, y) for tllc the ima,ge flow a t any given point,

where :

It should be noted that the ~naximum absolrite possible valuc of the image flow is ~ninimal

a t the origin of the ca*mera, i~na,ge plane and increascs quadratically as the distance increases

from the center.

The above eilvelopes ase then used to rejcct unrealistjc 2-Jl velocity estima,tes a.t diflcrent

pixel coordinates in the image. As a furt,ller note, i t should be mentioned that some on-

line elimination procedures can be irnplcmcnted depending on the current positions in the

observer automatotl, for example, the image flow field tends to a.ssume certain configurations

in the image plane depending on the 3-D motion, independent of the object's or the ha.nd's

structure, if the ~uotion is only relative rotatio~lal ~elocit~ics, the flow vectors all tend tllrough

pass from the sa,me point. In other words, in addition to off-line a-priori estimation of

the envelopes and on-line testing of ineasurcments, we can also develop custom rejection

techniques for certain observer automata states.

8 Recovering World Events

In this section we describe differcnt tecllniqucs for recovering the 3- D cvents. In particular

we utilize the refilled 2-D motion distributions t,ha,t were computed in the previolss levels in

order to achieve a robust estimation of the three dimensio~~al motion and structure vectors

of the scene under observations. We develop some techniques for finding estimates of thc

required parameters and discuss mathematical formulations that will enablc us to dctcrrnine

the 3-D event distributions.

We concentrate in our trea,tment of the subject on determining the ma,nipulating hand pa.-

rameters, as the hand configura.tion is well dcfined, we also continue using the assumption

that the feature points lie on a. p1a.na.r surfa.ce. As aagued before, the extension to a.rbitraay

collfigrira.tions is straight forwa.rd. The object hehaviour can be i.sscrted usiilg simi1a.r tech-

niques and/or by observing conveniently loca,t,etl surfa.cc pa,tches under similar assumptions.

We sta.rt by describing a, deterlninistic niethod to recovcr 3-I) pa,ra.meters, then we describe

other approximate methods and we.conclude by discussing some ma.thema.tica1 formula.tions

for using the same techniques for recovering va.ria.ble distributions of the world events at

different observer states.

The problem of recovering scene structure a.nd the camera. motion relative to thc sccne has

been one of the key problems in comput,cr vision. Many techniclucs havc bccn devclopcd

for the estima.tion of structure ant1 lnotion paramctcrs (Tsai and IIuang [3G], MTcng et al.

1411 etc.). A lot of existing algorithlns depend on cva l~a t~ ing thc motion parameters bctwccn

two successive frames in a sequence. IIowever, rcccli t rcsearch on structure and motion has

been directed towards using a large number of frames to cxploit the history of parametric

evolution for a more accurate cstimation and noise rctluction (Ullrnan [39], Grzywacz and

IIildreth[l4] etc.)

Next, we describe a method for rccovcring thc 3-D motioll and orientation of thc planar

surface (on which lies the 11a.nd feakures) from an evolving image sequence. The dgorithin

utilizes the image flow velocities in order to recovcr the 3-D parameters. First, we tlcvelop

an algorithm which itera.tivcly i~llproves the solution givcn two succcssivc irnagc frames. The

solution space is divided into three sllbspaccs - the translational motion, the 1-ota.tiona1 rnotio~i

and the surface slope. The solution of each subspace is updated by using the current solution

of the other two subspaces. The updating process continues until the motion parameters

converge, or until no significant irnprovernent is a.cliieved.

Second, we further improve the solution progressively by using a largc ni~nlber of image

frames and the ordinary differential equations which describe the evolution of motion and

structure over time. Our algorithm uses a, weiglited average of the expectetl para.mcters

and the calculated parameters using the 2-frame iterative algorithm as current solut,iorl and

continues in the same way till the end of the frame scqnence. Thus i t keeps t,ra.ck of the past

history of parametric evolution.

The solution is further improved by exploiting the temporal coherence of 3-D motion. We de-

velop the ordinary differential equations which describe the evolution of motion and strlictt~re

in terms of the current motion/struct.ure and the measurement,^ (the 2-D motion vect,ors)

in the image plane. As an initial step we assume that the 3-D motion is piecewise uiiiform

in time. The extencled I<alman filter is then used to update tlie~solution of the differential

equations.

8.1 A 3-D Recovery Algorithm

One can model an arbitrnry 3-D motion in terms of stationary-scene/moving-viewer as sllown

previously in Figure 14. The optical flow a t the image pla,ne can be related to the 3-D world

as indicated by tlie following pair of equations (In case of a, planar surfa.ce), for ea,ch point

(x, y) in the image plane :

where v, and vy are the image velocity a t image location (n:, y), (Ifx, IfI(, Ifz) and (Ox, RIr, Rz)

are the translational and rota.tiona,l velocity vectors of the observer, p and q are the planar

surface orienta.tions. The situation becomes, for each point, two equations in ciglit unknowns,

namely, the scaled translational velocities If,y/Z,, lflr/Z, ant1 Ifz/Z,, the rotational velocities

R x , fly and flz and the orientations 11 and q. Differential methods could be used to solve

those equa-tions by differentia.ting tlie flow field and by using approsimate met~hods to find

the flow field derivatives. The esisting incthods for computing the derivatives of the flow

field usually do not produce accura,te results. Our algorithm uscs a discrete method instead,

i.e, the vectors a t a number of points in the pla,ne is determinet1 and the prohlem reduces to

solving a system of non1inea.r equa,tions.

I t should be noticed that the resulting system of cqllations is nonlinear, however, it 11as some

linear properties. The rotational part, for example, is totally linear, also, for any combination

of two spaces a.mong the rotational, transla.tiona1 and slopc spaces, the syslcm bcco~nes lincaa.

For the system of equations to be consistent, we necd the flow estimates for a t least four

points, in which case there will be eight equa-tions in eight unknowns.

8.1.1 Two-Frame Algorithm

The algorithm takes a.s input the est,ima.t,e of the flow vectors a t a number of points 2 4

obtained from motion between two imagcs. It iterates updating the solution of each subspace

by using the solution of the other two subspaces. Each update involves solving a linear system,

thereby it requires to solve threc 1inra.r systems to complete a. single iteration. This process

continues until the solution converges, or until no significant improvement is made. The

algorithm proceeds as follows :

1. Set p, q = 0;

input the initial estima.te for rota.tion ;

Solve the 1inea.r system for tra.nslation;

2. Use the tra.nsla.tion and rotahion from step 1 ;

Solve the linear system for the slope ;

3. Set i = l ;

While (i < Max. 1tera.tions) a.nd (no convergence) Do

Solve for the rota.tions using latest estimates of translations, 11 and q;

Solve for the tra.nslations using 1a.test estima.tes of rotations, p and q ;

Solve for p, q using latest estimates of transla.tions a,nd rotations;

end While ;

8.1.2 Complexity Analysis

As we mentioned earlier, one sho111d notice in the equations relating the flow velocities with

the slope, rotational and translational velocities that they are "quasi-linear" , if one can say

so. The equations exhibit some linear properties. This suggests that a purely iterative tech-

nique for solving non-linear equations might not be a.n excellent choice, since, the va.riables

are linearly related in some way. To think of a way of "inverting" the rela.t,ions might be

a good start , although to do that without a framework based on iterating and gravitating

towards a solution is not a good idea,.

This makes one think of ampplying a method which converges faster than a, purely itera,tive

scheme like Newton's methocl. IIowever, the coniplexity of Newton's method is deterniined

by the complexity of computing the inverse Jacobia,n, which is of an order of N3, or N2."

multiplica.tions as the lower bouncl l~sing Strasscn's tcchniqne. In our case, since we have

ant least 8 equations in 8 unknowns, the colnplexjty is of order s3 = 512 multiplica.tions a.t

every iteration, and the method does not make any use of the fa.ct t11a.t the set of equa.tions

a t hand exhibits some linear properties.

Tile algorithm proposed, on the other hand, ~na~kcs very good use of the fa.ct that there a,re

some linearity in the equations, by inverting the set of relations for each subspace a t every

iteration. The complexity a t every iteration is of the ordcr of the complexity of computing

the pseudo-inverse which is of the order of (33 + 33 + 2 9 imultiplications art each iteration,

where the first 3 comes from solving the systcin for the rotational variables, the second 3 is

for the translations, the last 2 is for p and q . This is equal to 62 multiplications a t every

iterakion, which is significantly less tl1a11 the 512 multiplica,tions in a, methotl like Newton's

for example. It was noticed that the algorithiti converged to solution in a, vcry small nutnber

of iterations for most experiments we have conducted so far. Thc masimuln number of

iterations was 6.
-,

Using the latest solution obtained fro111 the two-frame a.na.lysis as the initial co~ldition for

the next two-frame problem in the image sequence would further decrease the complexity,

as the next set of parameters would, most probably, he close in values to the current pa,ram-

eters, thus the number of iterations needed to converge to tlle new solution would decrease

significantly.

8.1.3 Observations

a The algorithm is not sensitive to the initial condition of the orientation parameters.

The plane is simply assumed to be a frontal one a t the beginning. The slope paraaneters

evolves with iterations.

a The algorithm is sensitive to input noise just like other existing algorithms, some ex-

periments shows the sensitivity with respect to the change of viewing angle. Simila.rly,

the algorithm performs better for a large number of points that are evenly distributed

througllout the planar surfa.ce, t11a.n it does for clustered, smaller number of image

points.

a It is proven that there exists dual solutions for such systems. IIowever, if our method

gravitates towards a "fixed point" in t,lre solution space we can find the other explicitly

in terms of the first one from the rela~tfions given by Waxman and Ullma.11 [40].

8.1.4 Multi-Frame Algorit hin

The ordinary differential equations tha.t describe the evolution of motion and structure pa-

rameters are used to find the expression for the expected parameter change in terrris of the

previous parameter estimates. The expected change and the old estima.tes are then used t o

predict the current motion a.nd structure parameters.

At time instant t , the p la~la t surface equation is described by

To compute the cllange in the structure pa,ra.incters during the tiine interval dl, we tliflcren-

tiate the above equation to get

d Z d X 1 dl' dq dZ,
- = p - + X - + q - + K - + -
dt nt d t d t d l d l

The tiine derivatives of (X, Y, Z) in the a.bovc expression are given by the three components

of the vector - (V+RxR) that represent the relative motion of the object with respect to the

camera. Substituting these components for the derivatives and the expression pX + qY t Z,

for Z we caa get the exact differentials for the slopes and Z, as

Using the above relations, we can compute t , l~e new structure pa.ramctcrs a.t timc t + dl as

p = p + d p , q '= q + dq a.nd Zo = Zo + dZo

Thus the slope pa.ra.meters evolve a.t time t + dl, a.s follows :

The new tran~la~tional velocity I/ a t time t + d l can be foillld in the a.bscncc o l a.ccelera.tions

from

Dividing v by 2, we get the new expected scaled t ra~~sla t ional velocity components a t timc

1 + dl a.s follows :

where s is expressed as follows :

The expected rotational pa,rameters a.t time t +d t remain equal to their values a t time t since

and thus

Our first multi-frame algorithm uses a weigllted avera.ge of the expected parameters a t time

t + dt from the a,bove equations and the calculated parameters using the two-frame iterative

algorithm as the solution a t time t + dt, and continl~cs in the same way until the end of the

frame sequence. Thus it keeps track of tlie past history of para.metric evolution. We further

develop the first multi-frame algorithm to exploit tlie temporal coherence of 3-D motion.

We develop the ordinary differential equakions which describe the evolu tioii of motion and

structure in terms of the current motion/struct,urc and the two-dimensional flow vectors in tlie
... 4

image plane. We assume that the 3-D motion is pieccwise ~ ~ n i f o r m in time, i.e, R = V = 0.

We then use the equations expressing tlie time derivative of thc slope derived above and

the fact that the derivative of tlie rotational vclocit,ics is zero a.nd develop the followiiig

expressions for the scaled translational velocities and the depth 2, :

The extended I<alman filter is then used to update the solution of the differential equations.

Where the state vector call be written as :

X = [14- 147 I;, Qx fly p q]

and the measurement vector is expressed as :

& & & & & &
= ['Y 6, 6, 6y 6y 61 61 1

The beliaviour of the two-frame algorithm and the multi-frame algoritlu~i can be conceptual-

ized as a control system as shown in Figurcs 23a and 23b.Pa.rallel implementations could be

designed for tlie system, thus solving for the structure - ~notioll paraliietcrs for each si~rface

separately. In fact, solving tlie linear system a t each iteration could also be parallclized.

Extra processing is needed to scgmeub the polyhedra-like hantl into separate planar surfaces.

Structure / Motion Recovered Parameters
Two - Frame

Algorilhm I--
Figure 23.a : Two - Fra.me Algorithm

Figure 23.1): Multi - Fra.mc Algorithm

8.2 Other Algorithr~ls

Solution
t

Image Two - Frame

Algorithm

There are other non-iterative techniques for rccovcring the 3-D parameters resulting from

2-D motion between two frames. The methods that will be mentioned here rely on specific

assumption regarding the hand's geometry and/or world manipulating actions. Assuming

that the actual rela.tions between ieakure points that lie on the halid plane is well defined

than a closed form solutio~l for the structure parameters and depth can be estimated by

using a method like the one described by Fischlcr and Dolles [12]. The motion para.mctcrs

A

Mechanism

Initial
Zonditions

Updating

can then be easily recovered by solving a, 1inca.r system in six parameters.

I t should be noticed that we try to use alternative mcthods in order to niakc the sys tc~n of

equations "as linear as possible", the motive behind t11a.t is the fact t11a.t linear syste~ns can

be solved in a pseudo-real time framework for a relatively snlall number of feature points and

in addition a closed form solution always results. Another idea is to assume tha,t the surfa,ce

of the manipulating hand is frontal a t thc time of capturing the frame to be processed with

the previous one, thus p and q are equal to zcro, and the problem reduces to solving a 1inca.r

system in six parameters for the motion parameters, while tlie depth is easily colnputed by

knowing the 3-D distance between any two feature points, thus Z, is cqual to :

where f is the focal length of the lens, 1 is tlie real 3-D distance between two featurc points

on the hand and (xl , yl) and (x2, yZ) asre the CCD coordinates of the two image points.

The assumption here being that the observer always 1oca.tes itself to a. position in which

the hand is frontal with respect to the camera image plane, and that ma,nipulating move-

ments while the camera is moving and during computations is negligible. Other formulations

may attempt to find pseudo-close form s o l ~ ~ t i o n of the non-1inca.r second order system and

other assumptions, like the absence of rota,tional and/or trans1ation;ll motion retluccs the

complexity significantly.

8.3 Recovering 3-D Uncertaiilties

Ilaving discussed methods for computing the three dimensional motion vectors and structure

parameters between two image frames, we now use the same formulations descrihctl earlier

for 3-D recovery but using 2-D error distributions as estima.tes for motion and/or feature

coordinates in order to compute 3-D uncertainty distributions for the real world motion

vectors and structure instead of single values for the world events.

As an example to illustrate the idea., let's assume that we have a linear system of equa.tions

as follows :

The solution of this system is very ea.sily obtained as

Tha t is, a linear combination of the right hancl side parameters. If the parameters 21 and

zz were random variables of known probability distributions instcad of constants, then the

problem becomes slightly harder, which is, to find the linear combination of those random

variables as another random va.ria.blc. The obvious way of tloing this woultl be to use convo-

lutions and the formula. :

for the sum of two ra.ndom variables X I , X 2 for any real nulnber 9 and/or the formula for

linear combinations over the region X, which is for all z such t11a.t Px,,x,(z,y - z) > 0.

Using the moment generating function or the characteristic function seems also to be a very

attractive alternative. The moment genera.ting function Ad of a linca,r combination of random

variables, for example X I , X2 can be written as :

Max, + b ~ ~ + ~ (t) = expCt (A!,, (al)Mx2 (b t))

for independent random variables X I , X2. That is, the problern of solving linear systerns on

the form Ax = 6 , where b is a vector of random vaxiables,]nay be reduced to finding closed

form solutions for x in terms of tlie ra.ndom parameters (using any elimination technique) and

then manipula.ting the results and finding different expectations using moment generating or

characteristic functions.

The 2-D to 3-D conversion problem, a s discr~ssetl in dctails earlier, is a non linear sysf,cni on

tlie form F (x) = 6 where b is the vector of 2-D random variables obtained from the previous

levels. An approach to solving this system might be to try and approximate mathematically

the problem to finding the roots using an iterative technique which calclllatcs the Jacobian

a t every iteration and use Newton's method iterative formula for an over-determined system

a t the n th step as follows :

where J is the Jacobian of the system, however tlie Jacobian and F will contain positional

and motion random variable nonlinear combinations a.t every iteration and we 1nay have to

use the following fo r~ l~u lae for product and qi~otient of random variables :

Obviously, such elaborate computations a,t every stage of descending towa.rds a, solution for

the non-linear combinations of random va.riables is very 1ia.rd and cxpcnsivc to compute in

pseudo-red time, if not impossible.

The solutions we suggest to this problem of funding the random va,ria.blc solution for tlre

3-D parameters utilize the techniques we described in the prcviolis two snbsections. Using

either the two-frame iterative technique or the closed form algorithms, it should be noticed

that the problem reduces to either solving iii~rlti-linear system5 or a single one. In tha.t

case, using elimination and characteristic functions for computing the required expectat,ions

and/or distributions is straight forward, as all the systelns become linear or pseudo-linear.

In the iterative two-frame algorithm expectations can be used to avoid multiplication of

random variable estimates for the structure and tra.nsla.tiona.1 parameters when solving for

the rotational random varia.ble error pa.ra,metcrs. Also, the same can be used for the positional

parameters on the CCD camera array.

Thus, we have suggested algorithms for the quick estimation of the 3-D uncertainties in

the structure and motion of the lnaiiiplllatiol~ system. The next step would be to refine

these estimates and use them for asserting the world events with uncerta.inty modeling and

compensation. This will be described in the following two sections.

9 Refining World Events

In this section we describe techniques for elimina.ting and refining tlie 3-D models of ma.-

nipulation under observatioll, whose recovery was discussed in the previous sect,ions. In

particular, we discuss a strategy to reject improbable events that llligllt h a ~ e been computed

due to noise and uncertainties that were not con~pensa~ted for in the distribution formulation,

also because of unsmooth visual artifacts. We employ both existing knowledge a b o ~ i t the

mechanical properties of the ma.~lipulation and also knowledge from the current stake of tlle

observer automaton.

We concentra,te our treatmellt of the subject on tjhe three dili~cilsjonal behaviollr of the halld

that is used in manipulation. The 1ia.nd is assumed to be a, well defined entity, and as we

me~itioned before, cha.nging the hand and/or its characteristics can be modeled by simply

plugging in a module that describes tlie new characteristics, the same hantl is used tthroug1i

out the entire rnanipula tion activities.

Knowing the joint limits of the manipulating robot will enable us to reject i~nprobable rccov-

ered 3-D motioi~ vectors, that col~ld not have occurrcrl in the real 3-D world. As an example,

assuming that we use a gripper with two "clatvs" having only one degree of freedom, the i~ ,

obviously, any recovered 3-D rotational velocities for the claws should be rejected. Unreal-

istic slope estimations should also be rejected, knowing the robotic reachability of the end

effector, with respect to the viewer.

The current position in the observer a,ntomata will allow refining the recovered 3-D event

distributions, as it might well be the case that impossible manipulation a,ctions a t a specific

manipulation stage are recovered. It is impossible, for example, due to the visual sampling

rate, that the hand is in and upright position holding a nail in the center of the image plane

a t a time step, then having it disappear or hold another object at a dramatical distant 3-D

position in the next time step, unless, of course a manipulation or viewer system failure

has happened. In that case, some designated fa,il state should be accessed, discarding the

recovered parameters. Limits on Ifx., Vy, Ifz, Rx , f ly , Rz and Z arc asserted for every

observer subset of states, and used for rehling the recovered 3-D world events.

10 Navigating the Observer Automaton

At this point in the hierarchy of recovery and uncertainty levels, we have established methods

and algorithms for recovering the refined three dimensional velocity and striicture of the

scene under observation. In addition, we cornplltcd the distribution of the uncertainty in the

numerical values of the parameters in real-time. For example, the computed value for the

translational velocity Ifx nligllt be a randorn variable lying between two values If1 a.nd V2

with a known probability distribution 3. The same applies for all the other paramcters for

the different components in the scene.

The problem now is how to malie use of these distribution values in order to be able to

navigate in the obscrver automalton as defined in section 2 a.ntl dcmonstratcd by exa,mplcs in

section 3. In other words, hsving built the DEDS a.utornaton nlodel of the vis11a.l system and

its observer, we have a set of events t11a.t axe defined as ranges on the visual scene parameters

that causes state transitions bctwcen the autonlatoil states. For cxa~nple, there might be two

different evellts branching from a state in some screwing task observer auto~na~t~on and cat~sing

state transitions to two other states, and a self loop caused by the continuous dyna.mics withilr

a coa.rse quantization of a, DEDS state, as follows :

In addition t o other limits on the other scene pa.ramctcrs. That is, if 52,. occurs within a.

specific range, then the corresponding state tra.nsition should be asserted a.ccortling to the

above set of event description.

The problem then reduces to computing the correspo~iding areas under the refined distri-

bution curves obtained from the hierarchy levels. In the casc of the presence of more than

a, single pa.ra.meter in the traasibion event description, thcll the corresponding area. under

each parameter curve should be complltetl and multiplied for each pa,ra<meter in the event

definition. The goal is to find the probability of the occurrence of each cvent. 111 the above

example, the goal would bc to find thc probability of e l , ez and ea.

An obviolls way of llsing tliosc probability values is to establish some threshold values arid

assert transitions according to those thresholds. For example, if for any event in the set

(el,ez and e3), the computed probability of the range is > 0.85, then the corresponding

state transition should be asserted. I t should be noted t11a.t those tllrcsliold values are

highly task and state-dependent, appropriate values for the thresholds can be determined

by performing many experiments for dinerent task descriptions. T11c tliresl~olds can also be

updated adaptively according to the current manipulation patterns under observation. Many

problems may a.rise after ha.ving obta.ined the above proba.bilities a t the current autorna.ton

stake. It might be the case t11a.t none of the obtained probability values exceeds tlie set

threshold value and/or ail values a.re very low. In t11a.t case, there is a good chance that we

are a t either the wrong automata state, or t1ia.t a. gross error has occurred in ma.nipula.tion

or some systerri failure.

The remedy to such problems can be implemented through time proximity, that is, wait for a

while (which is to be preset) till a strong probability val~ic is rcgistercd and/or ~*ebrrcb in the

automaton model for the observer till a high enough probability value is asserted, a fail state

is reached or tlie initial ambiguity is assertcd. The rebacking strategy can be implemented

using a stack-like structure associaterl with each stat,e t,l~at 11a.s already been travcrscd. A

stack of the latest computed probability values sorted in descending order a.s an index to the

corresponding event. As soon as a forward tra,versal is performed, tlie top value should be

popped. Rebacking can be done by using the top of tlie stack value and do the correspo~idiilg

transition and compute the new probabilities for tlie events. For states that have not been

visited a t all, new stacks and computations sl~onld be be performed.

Having established techniques for navigating t,he observer, tlie model description is now

completed. The formulation uses uncertainties to assert current states of the manipulation

system and attempts to recover from mistakes a,nd errors. The model uses different inter-

mediate levels for computing uncertainties, from the sensor level to the observer ai~tomatoli

level. Next, we discuss some results and discuss our approa.ch. Then, we suggest ideas for

extensions and future research.

11 Results

A substantia.1 portion of the proposed system is already implemented and tested. Experi~nents

were performed to observe tlie robot liand. The Lord experimental gripper is used as the

manipulating hand. Different views of the gripper are shown in Figures 24.a to 24.c. Feature

tracking is performed for some dots on tllc gripper in real time, using the Maxvideo system.

Approximate algorithms to allow 1inea.rizing the optical systeili are used a7 described in

section 8.2. A static look-and-move strategy was then used for tracking the liand features.

Tlie visual tracking system works in real time and a position control vector is supplied to

the observer manipula.tor.

The 2-D uncertainty levels were tested. Edge detection with uncertainty is performed using

different noise levels as shown i n scctioil 6, tlie enclosing "envelopes" were determined for tlie

mechanical system and plotted in 3-D in scctioli 7, the rejection algorithms are completed.

A grasping task using the Lord gripper, as seen by tlie observer, is shown in Figure 25.a to

25.d. The sequence is defined by our model, and the visual states correspond to the gripper

movement as i t approaches a n object an then grasps it.

The image flow algorithm described in section 4.1 is tested on the image of the gripper. Tlie

2-D flow vectors resulting from the detection algoritjlim when applied to diagona.1 moveinents

of the gripper's image are shown in Figures 26.a a ~ i d 26.b. The motion was upwa.rds to the

left and downwards to the right. It can be seen tha,t the resulting optic flow vectors arc

consistent with the actual motion. The ima.ge gaussian pyramid of the gripper is shown in

Figure 27, the pyramid is formed by successive applications of gaussian low-pass filtering

and decimation by half, five levels of the pyra.tnid are shown. Sirnple segmentation and edge

tracing are shown in Figure 28 and 29, as a.pplied to the ha.nd. Thns, event identification for

the motion of the ha.nd is computed. Tra.cking mechanisms are demonstra.ted and shown to

work in real-time to follow the hand, uncertainty levels are also developed.

12 Discussion

We have proposed a new a.pproach to solving the problem of observing a ~noving agent. In

particular, we described a system for observillg a ma.nipa1atio11 process. Our a.pproach uses

the formulation of discrete event dyna.mic systems n 5 a high-level model for the fra.~nework

of evolution of the hand/object relationship over time. The proposed systcrn utilizes the a-

priori knowledge asbout the domain of the ma.nipula.tion a.cl.ions in orcler to a.chieve efficiency

and pra.ctica.li ty.

We started by describing the automaton 111odcl of a discrete event dynamic system then

proceeded to formulate frameworks for the manipulation processes, and the observer con-

struction. We developed efficient low-level event-identification mechanisms for determining

different manipulation movements in the system and for moving t,he observer. Next, we

defined and constrlicted six different levels for converti~lg thc raw 2-D image data into mean-

ingful 3-D descriptiolls of the world events. The formulation inclucles computing uncertainty

models rcsalting from errors in the 2-D ant1 3-D rccovcry mccha.nisms. The formulati011 al-

lows the observer to navigate in rca.1 time with a st,ablc bchaviour through the auto~naton

state space and thus assert world events efficiently.

The approach used can be considered as a frame work for a variety of visual tasks, as i t lends

itself to be a practical and feasible solution that uses existing information in a rohust and

modu1a.r fashion. The work exa~nines closely the possibilities for errors, mistakes and uncer-

tainties in the manipulation system, observer co~~struct ion process and c v e ~ ~ t identification

mechanisms. Ambiguities are dlowed to develop and are resolved aftcr finite time, recov-

ery mecl~anisms are devised too. Theoretical and experimental aspects of the work supports

adopting the framework as a new kind of basis for performing ma,ny task-oriented recognition,

inspection and observation of visual phenomenons. In the next section we examine extension

ideas and future research opportunities for which the formulation can be considered as the

backbone.

13 Extensions and Future Research

The proposed formulation can be extended to a.ccommodate for more manipulation processes.

Increasing the number of states and expanding the events set would allow for a variety of

manipulating actions. The system can be ma.de more "modu1a.r" by constructing a general

automaton model of a discrete event dyna.mic syste~n and defining the stakes, events and

the certainty thresholds for them in an automatic way through a learning sta,ge. In other

words, different ma,nipulation actions can be performed and "sl~own" to the observer and

then the possible states, events and sequences of operations are automatically embedded in

the general dynamic model. Thus, the manual formulation of the DEDS model for the task

would not be needed anymore.

More powerful models for the DEDS could be sought, for example, context sensitive gram-

mars, pushdown automata, turing ~nacliines and/or p-recursive functions. The rnodcl build-

ing process can be thought of as forming a, compiler with the object, sensor, task description

and learning modcl as inputs, and the algorit,l~~n to follow the observer automaton wit,h un-

certainty as the output. Feedback can be supplied to the manipulating system in order to

correct its actions, thus closing the vision-manipulation loop. The system could be gener-

alized to an arbitrary number of mobile manipulating robots and mobile observing ones, a

scheme would have to be devised to allow for distributed and parallel control of thc obser-

vation and feedback process in an eflicient way and to prevent deadlock and/or starvation

proble~ns.

The characteristics of the workspaces of both the maniprrlating robot and the observer can

be utilized in order to avoid problems like collision and occlusion. This might be necessary

to explore if both workspaces intersect in a 3-D volume. This can occur in a simple lab-

oratory setup with two fixed manipulators, visualizing the volume of intersection and the

holes and voids [I] within each robot reachable workspace will be necessary for planning and

constructing the model and its observer.

Foveal and peripheral vision strategies can be applied to "focus" on a specific aspect of the

scene under considerations, according to the present observer state. Pyramid approaches for

locating actions can be used. Logarithmic sensors, like cameras whose CCD array resembles

the human eye can be utilized a,s the observer's visual sensor for sliifting attention to the

interesting parts of the ima,ge.

Parallelizing the whole process by forming simultaneous observers can be explored. This

will be necessary in case of multiple observing robots, manipula.ting robots and/or different

kinds of sensors (tactile, range, vision ..etc) so as to allow for modular and efficient planning,

"seeing" and recovery mechanisms. Inter-parallelization of different algorithms should be

explored too. Overcoming dela.ys in co~nmunica,tion links between diflcrent observers and

between the vision, control and parallelization modules within the same observer module

should be addressed, specially if the modules are pitysicalEy distant within the laboratory

setup. Overcoming delays when feedback is supplied to the manipula.ting hand would be

necessary.

The idea of DEDS as skeletons for observation under uncertainty can be explored further

to allow for various other visual tasks. We discussed observing manipulation as a subset of

observing moving agents, however, si~nilar formulation can be described for other taslcs, like

recognizing stationary objects with optimal observation costs, i.c, minimal motion events.

Perturbation analysis [17,35] can be performed for the average task behaviour of frequent

visual events within a specified manipulation domain. Disappearing objects and partially

occluded objects can also he recognized opti~nally using the proposed sche~ne, using t,irne

proximity as another dimension for asserting the identity of different targets, that is, allow

recognition and/or tracking to be completed within a pre-specified, task-dependent time

frame.

References

[I] T. Alameldin, "Visualization of 3-D Workspaces", P11.D. Thesis, Computer and Infor-

mation Science Depabtment, University of I'ennsylvania., h preparation (1991).

[2] J. Aloimonos and A. Baadyopadhyay, "Active Vision". 111 Proceedin,gs of th,e lSt Ini,er-

national Conference on Conzputer Vision, 1987.

[3] P. Anandan, "A Unified Perspective on Computational Techniques for the Measurement

of Visual Motion". In Proceedings of the lSt In,terizatio~znl,Conjer~en~ce on Com.puter

Vision, 1987.

[4] H. L. Anderson, GRASP lab. Camera Sy.stenas and Their Effects on Algorithms, Tech-

nical Report MS-CIS-88-85 and,GRASP 1a.b. T R 161, University of Pennsylva.nia, 1988.

[5] R. Bajcsy, E. I<rotkov and M. Mintz, h4odels of Errors and Mistakes in Machine Per-

ception, Technical Report MS-CIS-86-26 a.nd GRASP lab. T R 64, University of Penn-

sylvania, 1986.

[6] R. Bajcsy, "Active Perception", Proceedin,g.s of the IEEE, Vol. 76, No. 8, August 1988.

[7] R. Bajcsy and T. M. Sobh, A Frametaork for Observing a Manil~ulatio~z Process. Tech-

nical Report MS-CIS-90-34 aad GRASP Lab. T R 216, University of Pennsylvania, June

1990.

[8] N. M. Bena.hmed, Camera, Calibration for Dynantic Eizvironinent. M.S. Thesis, Depa.rt-

ment of Electrical Engineering, University of Pennsylvania, 1989.

[9] P. J. Burt, C. Yen, a.nd X. Xu, "Mult,iresol~it~ion Flow-Through Mot.ion Ana.lysis". 111

Proceedings of tlte 1989 IEEE Conference on Computer Vision and Pattern Recognition.

[lo] P. J. Burt, et al., "Object Tracking wil,h a Moving Ca.mera", IEEE M~orkshop 012 Visual

Motion, March 1989.

[l l] E. S. Deutsch and J. R. Fram, "A Qua.ntitative Study of the 0rienta.tion Bias of some

Edge Detector Schemes", IEEE Trans. Comp7~t., C-27, No. 3, Ma.rch 1978.

[12] M. Fischler and R. C. Bolles, Randonz Sanzple Conse~zs~ls: A Po~.radigin for Model Fitting

with Applications to Inzage Analysis and Autoinated Cartography, R.eadings is1 Computer

Vision, Morgan I<aufmann Publishers, 1987.

[13] J . R. Fram and E. S. Deutsch, "On the Quantitative Evaluation of Edge Detection

Schemes and Their Comparison with TJillnan Performance", IEEE Trans. Cbmput., C-

24, No. 6, June 1975.

[14] N. M. Grzywacz and E. C. Hildreth, TIte Incremental Rigidity Scheme for Recovering

Structure from Motion: Position vs. Vclocity Ba.scd Formulatioiz.~, MIT A.J. Memo No.

845, October 1985.

[15] D. J . Heeger, Models for Motion Perception. P11.D. Thesis, Computer and Information

Science Department, University of Pennsylva.nia,, September 1987.

[16] J . Heel, "Dyna.mic Motion Vision", In Proceedings of tlte SPIE Con,fercnce on Complitcr

Vision, November 1989.

[17] Y. Ho, "Performa.nce Eva111a.tion aad Perturbation Analysis of Discrete Event Dyna.mic

Systems", IEEE Tmnsactions on Automatic Control, July 1987.

[18] J . E. Hopcroft and J. D. Ullman, Introcluction to Alrtoinala Theory, Languages and

Computation, Addison- Wesley, 1979.

[19] B. I<. P. Horn and J3. G. Schunck, "Determining Optical Flow", ArlzJiciaE Intelligence,

V O ~ . 17, 1981, pp. 185-203.

[20] B. I<. P. IIorn, Robot Vision, McGraw-JIill, 1987

[21] A. Izaguirre, P. Pu and J. Summers, "A New 1)cvclopment in Ca.mera Calibration:

Calibrating a Pair of Mobile Ca.rneras", In Proccediizgs of the Inlernalional Conference

on Robotics and A utomatioiz, pp. 74-79, 1985.

[22] D. I<eren, S. Peleg and A. Shmuel, Accurate IIicrarchicol Esli~izalio~z of Optic Flotu,

TR-89-9, Department of Computer Scicncc, The IIebrcw University of Jcrusalcm, June

1989.

[23] Z. Kohavi, Switchirzg and Finite Autonzuta TIceory, McGraw-IIill, 1970.

[24] E. I<rotkov, Results in Fincling Edges and Corners in Imagcs Using the First Direc-

tional Derivative, Technical Report MS-CIS-85-14 and GRASP 1a.b. T R 37, University

of Pennsylvania, 1985.

[25] 11. R. Lewis and C. 11. Papadimitriou, Elenzents of the Theory of Coinputalion, Yrentice-

Hall, 1981.

[26] Y. Li and W. M. Wonham, "Controllal~ility and Obscrvabilit,y in the State-Feedback

Control of Discrete-Event Systems", Proc. 27th Conf. on Decision and Control, 1988.

[27] H. C. Longuet-IIiggins and I<. Prazd~iy, The interpretation of a moving Retinal Image,

Proc. Royal Society of London 13, 208, 385-397.

[28] C. M. ~ z v e r e n , Analysis and Control of Discrete Event Dynanzic Systenzs : A State

Space Approach, Ph.D. Thesis, Massachusetts Institute of Technology, August 1989.

[29] T. Peli and D. Malah, "A Study of Edge Detection Algorithms", Com.puter Gro/,phics

and Image Processing, vol. 20, 1982, pp. 1-21.

[30] P. J. Ra.ma.dge and W. M. Wonha.m, "Supervisory Control of a, C1a.s~ of Discrctc Event

Processes", SIAM Journal of Control! a.nrl Oplinziz(i.tion, .Janua.ry 1987.

[31] P. J. Ramadge and W. M. Wonllam, "Modula,r Feedba.ck Logic for Discrete Event Sys-

tems", SIAM Journal of Control and Optinzizntioiz, Scptelnber 1987.

[32] G. E. RGv&sz, Iiztroduction to Forntal Lan,gvages, McGrasv-Hill, 1985.

[33] T. M. Sobh and I<. Wohn, "Recovery of 3-D Motion and Structure by Temporal F~~sion".

In Proceedings of the 2nd SPIE Confere~tce on Sensor Fusion., November 1989.

[34] M. Subbarao and A. M. Waxma.n, 0 1 2 The U~tique~zess of Iinage Floto Sollrtions for

Planar Surfaces iit Motion, CAR-TR-113, Center for Aut,orni~t,ion R,csea.rch, Universi1,y

of Ma,ryla.nd, April 1985.

[35] R.a,jan Suri, "Perturbation Analysis : The State of the Art and Itcsea.rc11 Issues Explained

via the GI /G/ l Queue", Proc. of tlte IEEE, January 1989.

[36] R. Y. Tsai and T. S. IIua.ng, "E~t ima~t ing three-dimen~iona~l motion pa,ra,meters of a

rigid planar patch", IEEE Tmizsactions on Acoustics, Sl>eech and Signal Processing,

ASSP-20(6), December 1981.

[37] R.. Y. Tsai, "An Efficient and Accurate Camera Calibra.tion Technique for 3-D Ma.chine

Vision", IBM Report.

[58] S. Ullman, "Analysis of Visual Motion by Biological a.i~d Computer Systems", IEEE

Computer, August 1981.

[39] S. Ullman, Maximizing Rigidity: Tlte incremental recovery of 3 - 0 slrlrcture from rigid

and rubbery motion, A1 Memo 721, MIT A1 lab. 1983.

[40] A. M. Waxman and S. Ullma.n, Surface Slructurc and 3 -0 h/lotion From Inzage Flow:

A ICinematic Analysis, CAR-TR-24, Ccnter for Automation R.esca.rcli, Universit;~ of

Ma.ryland, October 1983.

[41] J. Weng, T. S. Huang and N. Ahuja, "3-D Motion Estimation, Understanding and

Prediction from Noisy Image Sequences", IEEE Tian.sncfion,.s on Potfern Analysis and

Machine Intelligence, PAMI-9(3), May 1987.

[42] K. Wohn and S. R. Maeng, "Real-Tirne Estimation of 2-D Motion for Object Tracking",

In Proceeding of the SPIE Conjercnce on Intelligent Robotics, November 1989.

Figure 24.a Figure 24.b Figure 24.c

Different Vicws of the Lord Gripper
- - - - - - - - - - -

-

Figure 25.a Figure 25.b

Figure 25.c
The Grasping

Figure 25.d
Task

handdnew

Figure 26.a
Figure 26.b

Optic Flow Vectors

Figure 28 : Results of Edge Tracing

Figure 27 : Gaussian Pyramid of the Hand

Figure 29 :

69
Results of 2-D Segmentation to Find the II:r.~ltl

