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Abstract 

We addrcss tllc problcin of observing a moving agent.. 11i particlrlar, wc ploposc 

a system for ol~scrving a. manil)l~labioti plorrss ,  wlicrc a r o l ~ o t  I ~ a n d  maiii])ulal,cs 

an object.  A tliscrctc cvcnl dynamic sysI.cm (DEIIS) frainc w o ~ k  is devclo~tctl for 

the  hand/objcct  inlcracbion ovcr t i~r lc  ant1 a sta1)iIizing obscrvcr is const,rucbcd. 

Low-lcvcl m o d ~ ~ l c s  arc  dcvclopctl for rrcognizlng kllc "cvcnts" 1ha.t caliscs s ta te  

transibioiis wibhitl thc  dynamic manipulal ion sysl ,c~n.  'I'llc work rsamil i rs  closcly 

tllc possibilibics lor errors, mistakes a nrl  i~nctrl ,ai~lt , ics in blic manilnrIa.l,ion systcm, 

obsctvcr constrtictio~i j)ioccss atitl cvcrib itlr~~l,ification n~cc l lan is~ns .  T h e  s y s t c ~ n  

utilizcs diffcrcnt, trackitig l,cclir~iclr~cs i n  ortlcr to obscrvc I , l~r  task in a n  oc/7vc, 

ndaptivr: ant1 gorrl-(lit-cctcrl Inalincr. 
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1 Introduction 

The problem of observing a, moving agent was addressed in the literature extensively. It 

was discussed in the work addressing tracking of targets and, determination of tlle op- 

tic flow [3,9,10,19,22,42], recovering 3-D motion parameters of differen t kinds of surfaces 

[14,16,27,33,34,40,41], and also in the context of other problems [2,6,7,8,37]. In this work we 

try to  establish a framework for the general problem of observation, which may be applied 

t o  different kinds of visual tasks. We establish "intelligent" high-level control mechanisms 

for the observer in order to achieve an efficient approacll to  visually recognizing different 

processes within a specific dynamic system. 

We concentrate on the problem of observing a manipulation process in order to illustra.te the 

ideas and motive behind our framework. The process of observing a robot hand manipulating 

an object is very crucial for many robotic and ~nanufacturing tasks. It is important to know 

in an automated manufa.cturing environment whether the robot hand is doing the correct 

sequence of operations on an object (or more than one object). I t  might be a fact that  the 

workspace of the robotic manipulator cannot be accesscd by humans, as in the case of some 

space applications or some areas within a nuclear plant, for example. In that  case, having 

another robot "look" a t  the process is a very good option. Thus, the observation process 

can be thought of as a stage in a closed-loop fully automated system where there are robots 

who perform the required manipulation task and some otllcr robots who observe them and 

correct their actions when something goes wrong. Typical manipulation processes include 

grasping, pushing, pulling, lifting, squcezing, screwing and unscrewing. Visual information 

from the observing robots can be the only kind of feedback, or it can bc supplemented by 

other kinds, like tactile sensing. In this paper, we address the problem of observing a single 

hand manipulating a single object and "knowing" what is the hand doing, no feedback will 

be supplied to  the manipulating robot to correct its actions. 

To be able to observe how a, 11a.nd manipula.tes an object, we must be able to identify how 

the hand moves and how the 11andJobject physical rclationsllip evolves over time. An  obvi- 

ous way of doing this would be to identify the motion vectors a.s scen be the observer. In 

other words, identify the two-dimensional vectors in the observer's camera plane and use 

these as a cue to  know how the objects uncter co~~sideration moves in the three-dimensional 



space. T h e  problems of recovering the image flow vectors (the two-dimensional motion vec- 

tors in the camera plane), and identifying the scene structure and motion have been key 

problems in computer vision. Many techniques have heen developed for estimating the im- 

age flow [3,9,15,19,22], and to recover the three-dimensional world structure and motion 

[14,33,34,36,39,40,41]. Those techniques arc not problem-oriented, they are not restricted to 

a particular problem domain, as is the case with our observer construction problem. 

Trying to  use the above techniques directly to solve our observer problem will not be efficient. 

In fact, possibly not feasible to perform in a practical way using the curreilt technology, as 

the complexity of the manipulation process increases. Due to the fact that  we probably 

know a.-priori some information about the allowable (or useful) manipulation processes and 

the geometry of the robotic hand, posing tlic problem a s  a structure-from-motion vision 

procedure is a very naive way of modeling the obscrvcr system. It should also be noted 

that  the observer will have to be an  active one to be able to  intera.ct with the ~nanipulation 

environment in such a way as to be able to "see" a t  all times. The idea of an active observer 

was discussed in the literature [2,6], and it was shown that  an active observer can solve basic 

vision problems in a much more eflicicnt way than a passive one. 

We use a discrete event dynamic system as a high-level structuring technique to inodel 

the rnanipulation system. 0 ur formulalion uses the knowledge about tlie systcrn and tlie 

different actions in order to  solve the obscrvcr problern in an eficicnt, stable and practical 

way. The model incorporates dinercnt I~and/object rclationsl~ips and tlie possible errors in 

the manipulation actions. I t  also uses different tracking meclianisms so that  the observer 

can keep track of the workspace of the manipulating robot. A frame work is developed for 

the ha.nd/object interaction over time and a stabilizing observer is constructed. Low-level 

modules are developed for recognizing the "events" that causes state transitions within the 

dynamic manipulation system. The process uses a coarse quantization of the mani~>ulation 

actions in order to  attain a n  active, adaptive and goal-directed sensing mechanism. 

The work examines closely the possibilities for errors, mistakcs and uncertainties in the 

ma.nipulation system, observer construction process and event iden,tificatioii mechanisms. We 

divide the problem into six major levels for developing uncertainty models in the observation 

process. The sensor level models dea.1~ with the problems in mapping 3-D features to  pixel 

coordinates and tlie errors incurred in t1ia.t process. We identify tliese uncertainties and 



suggest a framework for modeling them. The next level is the extraction strwtegy level, 

in which we develop models for the possibility of errors in the low-level image processillg 

modules used for identifying features that are to be used in co~nputing tlie 2-D evolution of 

the scene under consideration and c o m p u t i ~ ~ g  the image flow . In the third level, we utilize the 

geometric and mechanical properties of the hand and/or object to reject unrea1isl.i~ esti~natcs 

for 2-D movements that  might have been obtained from the first two levels. 

After having obtained 2-D models for the cvolu tion of the hand/object relationship, we trans- 

form the 2-D uncertainty models into 3-D uncertairlty models for the structure and motion of 

the entire scene. The fourth level uses the equations that  govern the 2-D to 3-D relationship 

to  perform the conversion. The f fth lcvel rejects the improbahlc 3-11 nncertalnty ~nodels for 

motion and structure estima.tes by using the e s i s t i ~ ~ g  information abo t~ t  the geometric and 

mechanical properties of tlle moving compo~iel~ts in t,he scene. The sistli ant1 liigl~est level is 

the DEDS formulation with unccrtadntics, in which stake transitions and event identificatior~ 

is asserted according to the 3-D models of uncerta.inty that were developed in tlie previous 

levels. 

We describe the automaton model of a discrete event dynamic system in the next section 

and then proceed to formulate our framework for the lnallipulation process and the ob- 

server construction. Then we develop efficient low-level event-identification mechanisms for 

determining different manil~ula.tion movements in the system and for moving the observer. 

Next, the uncerta.inby levels a.re described in tletails. Some results from testing tlle system is 

enclosed and future extensions to the system a.re disc\lssed. 

2 Discrete Event Dynamic Systems 

In this section we present an  overview for the development of a theory for discrete event 

dynamic systems (DEDS). Dynamic systems are t~s l~al ly  motlelcd by fin it,^ sta.t.e automata 

with partially observable events together with a mechanism for ena.bling and disabling a. 

subset of state tra.nsitions [26,28,30,31]. \Vc describe n recently developed framework for 

analyzing and controlling discrete event dynamic systems [28]. We propose that this model 

is a suitable framework for many vision and robotics tasks, in particular, we use thc model 

as a high-level structuring technique for our system to observe a robot hand manipulating 



an object. The approach used in this frarncwork is a state spacc approach that  focuses 

on controlla.bility issues for DEDS. We consider the issues o l  stability, observability and 

sta.bilizability by output feedback within f 11 i s  frarncwork. 

2.1 What is a discrete event dynarnic system ? 

Discrete event dynamic systems (DEDS) are dyna.mic systcnis (typically asynchronous) in 

which state transitions are triggered by tllc occurrence of discrcte events in the system. Many 

existing dynamic system have a DEDS str~lcture,  manufactiiring systems a.nd cornmu~~ication 

systems are just two of them. The sta.1.c spacc approarch in represcnting and analyzing 

such systems will proba.bly lead to more applications that might bc incorp~rat~ed into the 

frarncwork of DEDS. I t  will be ass~lincd in the dcvclopment of the state space approach of 

analyzing DEDS that  some of the cvclrts in the systcrn arc co~~trollable, i.e, can bc cnablcd or 

disabled. The goal of controlling DEDS is to c'guide" tlrc beha,viour of the system in a way 

tha,t we consider "dcsira.ble". I t  is further assuincd that we arc able to observe only a. subset 

of the event, i.e, we can only see somc of the cve~lts that are occurring in the system and not 

all. In some cases we will be forced to make decisions regarding thc state of the system and 

how to control a DEDS based upon our observations only. 

In the next subsection we will discl~ss the finite state 1~iodc1 of a DEDS, 'I'llis r c ~ ~ r ~ ~ c i i t a t , i o n  of 

a, DEDS will be used the following subsections. Tllis ~nodcl will be a si~nplc non-dcterniinistic 

finite-space automaton. Grapllical represrntations for IIEDS autolnatons will be ilscd as 

exalnplcs to  exl>la.isl the different, dcfi~lit~ions and ideas to bc presented. The notions of 

stability for a DEDS will be int,roduccd and tliscussctl. MTe t11cn focns on the ql~cst~ions of 

observabiliby and state reconst,ruct.ion from intcrmittcnt observations o l  the event tra.jectory. 

Further, we address the prohlein of stabilization by out1)ut feedback. 

2.2 Modeling 

The discrete event dynamic systems under consideratio~l can always be modelctl by a non- 

deterministic finite-state automata with partially observable and controllable evc11t.s. In 

particular, one can make the dist,inct,ion bctwe.cn classical ailtolrlata theory [18,23,25,32] and 

our representation of DEDS in terms of the state transit,ions. In classical autornata the events 

are inputs to the system, whereas in DEDS the events are assumed to  be generated internally 



by the system and the inputs to the system a,re the control signals that  can enable or disable 

some of these events. We can represent our DEDS as the following quadruple : 

G = (X, C , U , r )  

where X is the finite set of states, C is the finite set of possible events, U is the set of 

admissible control inputs consisting of a specified collection of sl~bsets of C, corresponding 

to  the choices of sets of controllable events thak ca.n be ena.bled and I' 5 C is the set of 

observable events. Some functions can also be defined on our DEDS as follows : 

where cl is a, set-valued function that  specifies the set of possible events defined a t  each state, 

e is a set-valued function that specifies the set of events t.11a.t cannot be disabled a t  each state, 

and f is the set-valued function that  specifies state transitions from a state under different 

events. An output process can 11e forma.lized simply : whenever an event in l' happens we 

see i t ,  otherwise we don't see anything. 

Figure 1 : A Simple DEDS Example 

We can visualize the concept of DEDS by an example as in Figure 1, the graphical represen- 

tation is quite silnilar to  a classical finite a.utom;lton. IIere, circles denote sta,tes, and events 

are represented by arcs. The first symbol in each a.rc label denotes the event, while the sym- 

bol following "/" denotes the correspondil~g oatput (if the event is obscrvablc). Fina.lly, we 



mark the controllable events by ":u". Thus, in this example, X = {0,1,2,3), C = { a ,  P,  61, 

r = {a,S), and S is coi~trollable a t  state 3 but not a t  state 1. 

Also d ( l )  = e(1) = {(r,S), d(3) = {S), e(3) = 4, /(O,/?) = {0,3) etc. A tra.nsition, x +" y, 

consists of a source state, x E X ,  an event, cr E d(x), and a destina.tion state, y E f ( 2 , a ) .  

In general, a, DEDS automaton A is a. nondetcrrninistic finite statc antornaton, howevcr, i f  

f ( x , o )  is single valued for x E X then A can be termed as a, deterministic finite state 

automaton. A finite string of states, x = xozl ... x j  is termed a. - pat11 or a state tra.jectory from 

xo if xi+l E f(x;,d(x;)) for a16 i = O... j  - 1. Similarly, a finite string of events s = alaa...aj 

is termed an event trajectory frorn x E X if 01 E d(x) and a;+l E $( f (x ,  a l a z  ... a i ) )  for all i, 

where we extend j to  C* via 

with f ( x ,  E )  = 2. In our graphical exa.mple (Figure 1)) aPPb is an event tra.jectory. 

If we denote a tra.nsition labeled by a by -in, then wc ca.n similarly let jS dcnotc a, string 

of transitions s and +* denote any number of transitions, including no transitions. We can 

define the range of a state x by 

indicating the set of states that can reached from x, we can also define the range of a subset 

of states & in X by 

An algorithm for computing R(A,Xo) for a.ny Xo c X that  runs in 0(1z) where 12 = 1x1 can 

be easily formalized as follows : 

Let Ro = Qo = Xo and itera.te 

Rk+l = Rk U f (Qk, E) 
- 

~ k + ~  = ~ k + ~  n n k  

Terminate when Rk+l = R,k. Then, R(A, Xo) = Rk.  

A sta.te x E X is alive if d(y) # for till y E R(A, x). A subset Y of X is termed a live set if 

a.11 x E Y are alive. A system A is termed alive if X is a live set. 



2.3 Stability 

In this section we discuss the notions of stability a.nd the possibility of stabilizing a discrete 

event dynamic system. In particu1a.r) we are going to concentrate on stability notions with 

respect to the stales of a DEDS automaton. Assuming that  we havc identified the set of 

"good)' sta,tes, E ,  that  we would like our DEDS to "stay within" or do not stay outside for 

an  infinite time, the problem would reduce to : 

Checking out whether all tra,jectories from the other states will visit E infinitely often. 

Trying to  "guide" the system using the controlla.ble events in a way such t11a.t the 

system will visit the "good" sta.tes infinitely often. 

We shall s tart  by dcfining and tcsting for diflcrent notions of stability and thcn discuss wa.ys 

to  stabilize a system. We sllall sta.rt by a.ssuming that the DEDS model under consitleration is 

an  uncontrolled system with perfect knowledge of the state and event trajectories ( c ~ F  = 4 ) ,  

to simplify developi llg the definitions and exa.inples. 

2.3.1 Pre-Stability 

To capture the idea of stability , we can suppose that  wc have drcady identified a subset of 

states E in X t11a.t returning to E implies bting in a. position to continuc desired behaviour 

f r o ~ n  that  point on. We call dcfine the tlotion of a state in t l ~ e  DEDS bcing stable wit11 

respect to l;: in two stagcs. The first stage will be the weaker notion and will be termecl 

pre-stability. We say that  s E X is pre-stable if all paths from x can go to E'in a finite 

number of transitions, i.e, no pa.tll from x cnds up in a cycle t11a.t does not go t l~rough E. 

Figure 2 : Stability Example 

10 



In Figure 2, states 0, 2, 3, and 4 are pre-stable, since all transitions from them can goto (0, 

3) in a finite number of transitions. State 1 is not pre-stable since it will stay forever outside 

E if an infinitely long string of 6's occurs. A definition of pre-stabilit,~ can be formalized as 

follows : 

Givcn a live system A and some E c X ,  a stjake x E X is pre-sta.ble with respect to E (or 

E-pre-stable) if for all x E X(A,x)  such that 1x12 n,  there exists y E x such that  y E E. We 

say that  a set of states is E-pre-stable if all its elements are E-pre-sta.ble and a system A is 

pre-stable if X is E-pre-stable. 

The restriction for liveness can be flexible in the sense that if all the dead states are within 

E, then an automaton might still be E-pre-stable. I t  follows from tlic above definition that  

a state x E X is E-pre-sta.ble iff n: E E or f ( x ,  rl(z)) is E-pre-stable. The following algorithm 

computes the maximal E-pre-stable set X ,  within a system : 

Let Xo = E a.nd iterate : 

Xk+] = (XIJ(Z, d ( ~ ) )  C Xk} UXk 

Terminate when Xk+l = X k ,  then X, = Xk.  

In Figure 2, it can be noticed that  XI = Xz = X, = (0, 2, 3, 4).  

2.3.2 Stability 

The stronger notion of st,ability corresponds to returning to the set of "good" states E in a. 

finite number of transitions following any excursion outside of E .  Thus, given E ,  we define 

a state x E X to be E-stable i f  all paths go through E in a finite number of transitions and 

then visit E infinitely often. As an exa.lz~ple, in Figure 2, where E = (0, 3) ,  only 2 and 3 are 

stable states. State 1 is not stable since the system can loop at 1 infinitely. State 0 although 

in E is not stable since the system can make a transition to 1 and then stsays there forevcr, 

the same applies to state 1. We can use the previously defined notion of prc-stabilit,y and 

define a state to be  E-stable i l  all the states in its reach are E-pre-stable. 111 Figure 2, 0 and 

4 are not E-stable since thcy can reach 1, which is not E-prc-sta.ble. We can define st,ability 

as follows : 

Given a live A and x E X ,  x is E-stable iff R(A,x)  is E-yrc-stable. A Q c X is sta.ble if aJl 

x E Q are stable. A system A is stable if X is a. stable set, from which we can conjecture 



tha.t A is E-stable iff it is also E-pre-stable. 

2.3.3 Pre-Stabil izabil i ty 

Now, we introduce control and reconsider the stability notions discussed before. We try 

to  "guide" our system or some sta.t,es of it to bcha.vc in a way that we consider desira.blc. 

Pre-stabilizability is described as finding a. sta.t,e feedba.ck such that  the closed loop system 

is pre-stable. We can then define pre-sta.biliza.bility formally as follows : 

Given a live system A and some E c X ,  x E X is pre-stabilizablc with respect to E ( or 

E-pre-stabilizable ) if there exists a state feedl~ack Ii' such that x is alive and E-pre-stable in 

Ari. A set of states, Q ,  is a. pre-sta.bilizable set if thcre exists a feedba.ck law Ii(s) ( A control 

pattern ) so that  every x E Q is alive and pre-stable in A,<, and A is a, pre-stabiliza1,le system 

if X is a pre-sta.bilizable set. 

As a.n example, in Figure 3, state 1 is yrt-sta.bilizable since clisabli~lg y pre-stabilizes 1. 

IIowever, disabling y a t  stat-e 2 leaves no other dcfincd events a t  2 and "kills" i t ,  so neither 

state 2 or 3 is pre-stabilizable. 

Figure 3 : Pre-S tabilizability Example 



2.3.4 Stabi l izabi l i ty  

Stabilizability is an extension of pre-stabilizability. Stabilizability is described as finding a 

state feedback such t11a.t the closed loop system is stable. We can then define stabilizability 

formally as follows : 

Given a live system A and some E c X ,  x E X  is stabilizable with respect to E ( or E -  

stabilizable ) if there exists a, state feedback li' such that  x is alive and E-st,able in AIC. A 

set of states, Q ,  is a stabilizable set if there exists a feedback law I<(s) (a  control pattern) so 

that  every x E Q  is alive and stable in AIc, and A is a stabilizable system if X  is a stabilizable 

set. 

Figure 4 : Stabilizability Example 

In Figure 4,  disabling /3 a t  state 2 is suficient to make the whole systcrn sta,ble with respect 

to state 0. Disabling y a.t state 1 will help stabilize only state 1, beca,use the systenl call 

then continue looping between sta.tes 2 a.nd 3. Disabling P at  state 3 will not help stabilize 

or pre-stabilize any state. 

In this section we address the problem of detcrrnining the clirrent state of the system. In 

particular, we are interested in observing a certain sequence of observable events and making 

a decision regarding the state that  the DEDS automaton A might possible be in. In our 

definition of observahility, we visualize a.n inter~nitteilt observation motlel, no direct mea- 

surements of the state are made, the events we observe are only those t l ~ a t  a.re in r C C, we 

will not observe events in E nF and will not even know that  any of whicl~ has occurred. State 



ambiguities anre allowed to  develop ( which milst ha.ppen if C # r ) but they are required to 

be resolvable after a bounded interval of events. This notion of observability ca.n be illustrated 

gra.phically as in Figure 5. 

1 I I 

t t b output String 

Perfect state knowledge 

Figure 5 : Notion of Observability 

2.4.1 Requirements 

In developing the theory and examples we shall concentrate on uncontrolled ~nodels of DEDS 

automatons with partial knowledge of the event trajectory. Due to the fact that we atre 

"seeing" only observable events in r in our system, it is not desirable to have our automaton 

generate arbitrarily long sequences of unobservable events in C n F. A necessary condition 

to  guarantee this is tha t  the automaton after rcrnovillg the observa.ble events AJT, must not 

be alive. In fact, i t  is also essential that every trajectory in AlT is killed in finite time by 

being forced into a dead state. It can be seen that the condition for a DEDS automaton to 

be unable to generate arbitrarily long sequences of il~~observable events, is that A I ~  must 

be D-stable, where D is the set of states tha,t only havc observable events defined (i.e, 

D = {X E X (cl(x) n T)). 

2.4.2 State Observability 

As illustrated in Figure 5, a DEDS is termed observable if we can use the observation sequence 

to determine the current state cxactly a t  intermittent points in time separated by a hunded 

number of events. More formally, taking any suficiently long string, s, that  call bc generated 

from any initial state x. For ally observable system, we can then f i l lr l  a prefix p of s such 

that  p takes x to a unique state y and the length of the remaining suffix is bounded by some 

integer n o .  Also, for any other string t ,  from some initial s tate z', such t*hat t has bile same 



output string as p, we require that  t Lakes 2' to the same, unique state y. 

Figure 6.1 : A Simple System 

Figure 6.2 : Observer for the  System in Figure 6.1 

In Figures 6.1 and 6.2 a simple system a.nd its observer are illustrated. It can be seen that  

the observer will never know when will the system be in states 3, 4 or 5, since the events 

that  takes the system to  those states are unobservable ( 6 / c  means that  6 E C nF ), namely 

6 and y. There are two stakes in the observer whicl~ are a~nbiguous, however, another two 

states are singleton states, i.e, when our observer reaches them, we'll know the esact state 



that  the DEDS in currently in. IIad it been the case that  our observer could, for c x a m ~ ~ l e ,  

loop forever in ambiguous states, then the DEDS would be unobservable. This leads to the 

following formal definition of observability that ties it with the notion of stability : 

A DEDS automaton A is observable iff E is nonempty and 0 is E-stable. 

where 0 is the observer for A and E is the set of singleton states of 0. It can hc sccu that  

the observer in Figure 6.2 is stable with respect to the nonempty subset of statres (0, 2) and 

thus the DEDS of Figure 6.1 is observa.ble. 

2.5 Output Feedback Stabilizability 

In this section we combine the ideas disc~issed in the previous two subsections regarding 

observability and stability to addrcss the problem of stabiliza.tion by dyna,mic output feedback 

under pas t id  observations. In this sect.ion we concentratc on pa.rtia1ly controlled systc~ns with 

partial knowledge of the event trajectory. 111 particula.r, our goal is to tlevelop stabilizing 

compensators by cascading and a stabilizing state feedback defined on the observer's state 

space. 

2.5.1 Requirements 

To attack the problem of output fcedback stabilization, it should be noticed that  we are 

actually trying to "ma~iipulate" the system's obscrvcr, in other words, what we lia,ve ava.ila.ble 

in a sequence of observable events (the system's ovllmt) and we are trying to use this output 

to  control the beliaviour of the systcrn using only the events that we can control. It  is tllcn 

possible to redefine the problem of output feed11a.ck stabilization a s  the stabilization of the 

observer by state feedback. 

The obvious notion of output E-stabilizability (stabilizability with respect to E c X) is the 

existence of a cornpcnsator C so t1ia.t the closed-loop system Ac is E-stable. It is possible 

that  such a stabilizillg compensator exists, such that we are sure t11a.t the system passes 

through the subset E inf nitely oftcn (E-stable) btit we nevcr know when the system is in E. 

A stronger notion of output feedback stabilizahility would not only requires that  the systeln 

passes through subset E infinitely often, but also that we rcgula~*ly know 1v11en the system is 

in E. In out example and discussion wc shall concentrate on this strongcr notion of out])ut 



Sys tern 

Observer 

Figure 7 : Example for Outpu t  Stabilizability 

2.5.2 S t r o n g  O u t p u t  Stabi l izabi l i ty  

The basic idea behind strong output stabiliza.bility is that we will know that  the system is 

in state E iff the observer sta.te is a slibset of E. The fact t11a.t the observer state should be 

a subset of E instea.d of having the observer state of interest includes states in E is because 

we wa.nt to  gmnmn.tee t,ha.t our system in within E. Our cornpensator should then force the 

observer to a state corresponcling to a subset of E at  intervals of at  lllost a. finite integer 1: 



observable transitions. We can then formalize the notion of a strongly output stabilizal~le 

system as follows : 

A is strongly output E-stabilizable if there exists a state feedback I{ for the observer 0 such 

that  01( is stable with respect to Eo = { i E Z ( i c E }. 

where Z is the set of states of the observer. 

As an example, considering the DEDS and its observer in Figure 7, where E = (1, 21, we 

have to  check the observer stability (or stabilize the observer) with respect to  Eo ,  becai~se 

this is the only observer stake that  is a subset of E. As a, start,  we do not know which state is 

our system in (as denoted by the state (0, 1, 2, 3}), however, using the observcr transitions 

we can see that  t o  achieve Eo-stability for the obscrver we only need to  disable a a.t the 

observer state (0, 2). I t  should be noted that  all the events are observable in this DEDS 

automaton. 

3 Modeling and Observer Construction 

Manipulation actions can be modeled efficiently within a discrete event dynamic systenl 

framework. It should be noted that we do not intend to discretize the workspace of the 

manipulating robot hand or the movement of the hand, we are merely using the DEDS 

model as a high level structuring tecllniqr~e to prcserve and make use of tlle informa.tion we 

know about the way in which each manipulation task should be performed, in addition to 

the knowledge about the physical linlitations of both the observer and manipulating robots. 

We avoid the excessive use of decision struct,urcs and cxha,usbivc scarcl~es when observing thc 

3-D world motion and structure. 

A bare-bone approach to solving tlle observation problem would have been to  try and visually 

reconstruct the full 3-D motion parameters of the robot's hand, which would have more than 

six degrees of freedom, depending on the number of fingers aad/or claws and 11ow they 

move. The object's motion should also be recovered in 3-D, which is coinplica.ted especially 

if i t  is a, non-rigid body. That  proccss should 1)e done in rcal time while the task is being 

performed. A simple way of tracking might be to try and keep a fixed geometric relationship 

between the observer camera and the hand over time. Ifowever, thc above for~nulat~ion is 

inefficient, not needed and for all practical purposes infeasible to compute in real time. The 



limitation of the observer reachability and the extensive cornputations required to perform the 

visual processing are motives 11ehind formulatii~g the problem as a hierarchy of task-oriented 

observation modules that  exploits the higher-level knowledge about the existing system, in 

order t o  achieve a feasible n~eclia.nism of keeping the visual process under supervision. 

We do a coarse quantization of the visual manipulation actions which has both cont in~~ous  

and discrete aspects of manipulation dynamics. State transitioils witliin the manip~ilation 

domain are asserted according to probabilistic models that determine a t  different instances 

of time whether the visual scene under inspection has changed its state within the discrete 

event dynamic system state space. We next discuss building the rnaniyulation model for two 

simple tasks, grasping and screwing, then we proceed to develop the observer for these tasks. 

Formulating the ul~rertainty models for the state transitions and t l ~ c  inter-state continuous 

dynamics will be left for the sections that  deal with the different iincertainty levels and event 

identification mechanisms. 

3.1 Building the Model 

The ultimate goal of the observation mecl~aaisrn is to be able to kt~olv a,t all (or most) of the 

time wha.t is the current 1na.nipulation process and what is tlic visual relationship between the 

hand and the object. I t  should be noticed that this concept, is very similar to the concept of 

observability as defined in the previous section for general DEDS. The fact that  the observer 

will have to move in order t o  keep track of the manipula.tion process, makes one think of 

the output feedback stabilizability principle for general DEDS as a rnotlel for tlie tracking 

technique that  has to be performed by the ol~server's csmcra. 

In real-world applications, many manipnlat,ion tasks are pcrforn~ed by robots, iilcluding, but 

not limited to, lifting, pushing, pulling, grasping, squcczing, screwing and unscrewiiig of 

machine parts. Modeling all the possible tasks and also the possible order in which they are 

to  performed is possible to  do witliin a DEDS state model. The different hand/object visual 

relationships for different tasks can be modelcrl as tlie set of states X. Movenicnts of tlie hand 

and object, either as 2-D or 3-D motion vectors, and the positions of t11c hand within the 

image frame of the observer's csrnera can bc tllought of as the events' set I' that  causes state 

transitions within the manipula.tion process. Assuming, for the time being, that we have no 

direct control over the mar~ ipu la~ t io~~  process itself, we can define thc set of admissible control 



inputs U as the possible tracking actions t11a.t can bc performed by the hand holding the 

camera, which actually can alter the visual configuration of the manipulation proccss (with 

respect to the observer's camera). Furtlicr, wc call tlcfinc a, set of "good" statcs, whcrc the 

visual configllration of the manipulation process cnablcs the camera, to keep track and to 

know the movements in the system. Thus, it can be secn tha,t the problem of obscrvilig the 

robot reduces to the problem of rorming a.n o l ~ t p u t  stabilizing obscrvcr for the systern undcr 

consideration, which was discussed in details in the previous section. 

I t  should be noted that  a DEDS representation for a maaipulatio~i task is by no mcans 

unique, in fact, the dcgree of efficiency dcpcnds 011 thc person who builds the modcl for the 

task, testing the optimality of a ~nanipulation lnodcls is an issuc that is to be addrcsscd in 

the future. Al~tornating the process of building a motlcl is another issue that  will have to  

be addressed later. As the observcr identifies the cur~cil t  statc of a rnanip~~lat~ion task in a 

non ambiguous manner, i t  can then start llsiiig a practical and cficient way to determine the 

next state within a predefined set, and consequently perfor~u necessary tracking actions to 

stabilize t,he observation process with respect to the set of good statcs. Tha t  is, the curreilt 

s tate of the system tells the observer what to look for in the next step. 

3.1.1 A Grasping Task 

We present a simple model for a grasping task. The modcl is that  of a gripper approaching 

an object and grasping it. The task domain was choscn for simplifying the idea of building 

a model for a. ~nanipulation ta.sk. I t  is obvious that more cotnplica.tcd models for grasping or 

other tasks can be built. The example shown here is for illustra.tion purposes. 

As shown in Figure 8, thc model rcprcsents a view of the liand %at state 1, with no object 

in sight, a t  s tate 2, the object starts to appear, a t  state 3, tlie object is in the claws of the 

gripper and a t  state 4, the claws of the g~ ippcr  closc on thc object. Thc view as presented 

in the figure is a frontal view with respcct to the camera image plane, however, the hand 

can assume any 3-D orientation as so long as the claws of tlie grippcr are within sight of the 

observer, for examplc, in the case of grasping an object resting on a tiltctl planar stirface. 

This demonstrates the continuous dynamics aspects of the system. In other words, different 

orientations for the approaching hand arc allowable and observa.ble. State changes occur 

only when the object appear in sight or when the hand cncloscs it .  The f~on t~a l  upright view 



is used to facilitate drawing the automaton only. 

Figurc 8 : A Motlcl for a Grasping Task 

I t  should be noted that  these states call be consideretl as the set of good states E ,  since t l~ese 

states are the expected diflerent visual configura.tions of a hantl alid object within a grasping 

task. States 5 aad  6 represent i~lstability in the system a.s they describe the situation where 

the hand is not centered with respect to the camera imaging plane, in other words, the lland 

and/or object are not in a gootl visual position with respect to the observer as they tend to 

escape the camera view. These states arc considered as "bad" states as the system will go 

illto a non-visual state unless we correct the viewing position. The set X = {1,2,3,4,5,6) 

is the finite set of states, the set E = {1,2,3,4) is the set of "good" states. 

The events arc defined a.s motion vectors or motion vector probability distribntions, a.s will 



be described later, that  causes state transitions and a.s the appearance of the object into the 

viewed scene. The transition from state 1 to state 2 is caused by the appearance of the object. 

The transition from state 2 to state 3 is caused by the event that  the 11a.nd has encloscd the 

object, while the transition from state 3 to state 4 is caused by the inward movclnent of the 

gripper claws. The transition from the set {1,2)  to the set {5,6} is caused by lnove~nent of 

the hand as it escapes the calncra view or by thc increase in depth between the camera and 

the viewed scene, that is, the hand moving fa.r away from the camera. The self loops are 

caused by either the stationarity of the scene with respect to  the viewer or by the continuous 

movement of the hand as i t  changes orientation but without tending to escape a good viewing 

position of the observer. In the next seclion we discus different tecl~niques to identify the 

events. The controllable evcnts denoted by ": 1" are the tracking actions required by the 

hand holding the camera. to  compensate for the observed motion. Tracking t,echniques will 

later be addressed in detail. All the events in this automaton arc observable and thus the 

system can be represented by thc triple G = (X, C, T), where X is the f ni tc sct of sta.tcs, C is 

the finite set of possible events and T is the set of ad~nissible tracking actions or controllable 

events. 

It should be  mentioned that  this lnodcl of a grasping task could be extended to  allow for 

error detection and recovery. Also search states could be added in order to "look" for the 

hand if it is no where in sight. The purpose of constructi~ig the system is to  develop an 

observer for the automaton which will enable us to dctcrltline the current state of the system 

a t  intermittent points ill time and further more, ena.blc us to use the sequence of events 

and control to  "guide" the observer into the set of good stales E and thus stabilize the 

observation process. Disabling the tracking events will obviously make tllc system neither 

stable or pre-stable with respect to the sct E = {1,2,3,4),  however, it should be notcrl that  

the subset {3,4) is already stable with respect to E regardless of the tracking actions, that, 

is, once the system is in state 3 or 4, it will remain in E (as defined by our formulation of the 

model). The whole system is stahilizahle w.r.t. E ,  cna.bling the tracking events will cause 

all the paths from any state to go throng11 L? in a finite number of transitions and then will 

visit E infi nitely often. 



3.1.2 A Screwing Task 

The next model we present is one for a. simple screwing task. The task is t11a.t of a gripper 

screwing a a  object (a, nail for exa,mple). I t  is assumed that  the c1a.w~ of the gripper a.lrcady 

encloses the nail and that  contact is ma.inta.ined tllrougl~out the process, tlle rotation is 

allowed to  be either clockwise or a.nticlockwise. 

Figure 9 : A Model for a Scrcwing Ta.sk 

As shown in Figure 9, the model represents a frontal view of the liand a t  state 1, with the 

object between the claws, the liand starts to rotate a t  state 2 and 3 with some view of tlie 

claws and the object still in sight and the claws are occluded at  state 4 wllich represents a sidc 

view of the gripper. This specific visual representation was chosen because of the fact that  

transitions between states 1 and 3 and the self loop at 3 cannot be coinpensated by a tracking 

action due to  the physical lilrlitations of the tracking arm, in other words, the observing robot 

might not be able to  do 360 clegrces rotations around the n~anipula~ting hand, cspccially if 

the workspaces of both robots do not intersect and both are fixed, non-mobile robots. As 

mentioned before, the frontal upright view with respect to the camera imaging plane in statc 

one was chosen only to facilitate drawing the automaton. The hand can a s s ~ ~ m c  any 3-11 

orientation as so long as the claws in states 1, 2 and 3 are within sight of tlie observer, for 

example, in the case of screwing a nail into a tilted wall. 



As shown by our model, the automaton tends to keep the frontal view of the hand as long as 

possible (as far as the observer robot can rotate), after that the observer will just have to sit 

idle until rotation of the hand is trackable again. 1f one define the stable visual state as state 

1, then obviously the system cannot be ~ n a d e  stable with respect to that  state, however, one 

can think of a screwing ac1,ion on the whole as a stable sct, sincc the robot hand is always 

within sight of the observer and it does not trnd to escape the viewing field. In that  case the 

set of "good" states E is the same as the set X = {1 ,2 ,3 ,4 ) ,  the finite set of states. The 

goal of the observer in that  case would basically be trying to keep a fronta.1 view as long as 

i t  can. 

The cvent el can be defined as rotations that the observer robot can track and keep a frontal 

position of the hand, while ez is the one that  makes the observable robot rea.cl~ its "limit" 

position where i t  cannot rotate around the hand in the same direction any longer. The 

rotations es are the untrackable rotations, whicl~ lie bcyond the reachable workspace of the 

observable robot. The event c4 can be clcfined as the event that  causes thc visual scene t o  

be a side view of the gripper. 

3.2 Developing the Observer 

In order to  know the current state of the lnanipulatiou process wc need to observe the 

sequence of events occurring in the system and make decisions regarding the state of the 

automaton, state ambiguities are allowed to occur, however, they are required to  be resolvable 

after a bounded interval of events. An observer, as defined in the previo~ss section, have to be 

constructed according to the visual systcm for which we devclopcd a DEDS model. The goal 

will be to make the system a strongly 011 tpnt stal~ilizal~le one and/or construct an observer 

to satisfy specific task-oriented visual requirements that  the user may specify depending on 

the nature of the process. It should be noticed tllat events can be asserted with a specific 

probability as will be described in the sections to come and thus state transitions can be made 

according to  pre-specified thresholds that cornplirncnts each state definition. In the case of 

developing ambiguities in deterrnii~ing current and future states, the history of evolution of 

past event probabilities can be used to navigate backwa,rds in the observer automa.tfon till a 



strong match is perceived, a fa.il sta.te is reaclled or the initiai ambiguity is asserted. 

Figure 10 : Observcr for thc  Grasping Systcm ' 

As a n  example, for the model of the grasping task, an ol>servcr can be formcd for the system 

as show11 in Figure 10. It can be easily seen tliat the syst,eln can be made stable with respect 

to  the set Eo as defined in the previous scction. At the start,  the state of the system is 

totally ambiguous, however, the observer can be "g~zided" to the set Eo consisting of all the 

subsets of the good states E as dcfinecl on the visual system model. It can be seen that  by 

enabling the tracking event from tile state (5, 6) to the state ( I ,  2), all t,hc system can be 

made stable with respect to  Eo and thus the system is strongly output stabi1izal)le. The 

singleton states represent the instances in time wherc thc observer will bc able to  determine 

without ambiguity the current state of the system. 

In the next sections we shall elaborate on defining the different events in the visual ~nanip-  

ulation system and discuss different techiliques for event and state identifica.tion. We shall 

also introduce a framework for conlput,ing the uncertairrty in determining the observable vi- 

sual events in the system and a method by which the uncertainty distribution in the system 

can be used to efficiently keep track of the different observer st-ates and to  navigate in the 



observer automa,ton. 

4 Event Identification 

In this seclion we discuss different techniques for calculating tlie "events" tliat causes state 

transitions within the model t1ia.t we disc~~ssed in the previous section. We introduce the 

concept of uncertainty in recovering the visual actions of the manipulation proccss and for- 

mulate a way of using the uncertainty in the system in an eficient recovery mechanism. 

Using the formulation in tlie previous scction, it caa be shown, from the examples uscd in 

modeling the manipulation proccss, that  the events that  camuses state transitions are either 

primitives like specific 3-D moveinents of tlre manipulating hand and/or events like "there 

is an object now in view", "the hand has enclosed the objcct" and so 011. Tlie events that  

are supposed to be identified and recovered a.b different states of the observer automaton are 

highly dependent on the current state in the observation process. Thus tlic obscrver tends 

to  "look" a t  specific actions a t  clifferent instsarnccs of time. 

We next discuss techniques to be uscd in identifying the 3-D motion of tlic ~na~nipulation 

hand and/or the object, which are events tliat arc always important to recover in order to  

enable tlie observer to navigate it1 the aut,omaton. The process is startcd by identifying the 

manipulating hand and the object (if i t  exists) within the observer's viewing window. We 

then proceed to develop a.n algorithm for dctcclilig tllc two-dimensional motion vectors of 

the hand on the observer's camera plane. Overall motion estilnation and different tracking 

strategies are then developed in order to be able to stabilize tlie observer in tlic inost eficient 

way. 

4.1 Image Motion of the Hand 

In order to  be able to  identify how the manip~la~t ing hand is moving within a grasping task, 

we use the image motion to  estimate the ha.nd movement. This task can be accomplisl~cd by 

either feature tracking or by computing the f111l optic flow. Feature tracking seems to be a 

good option for determining the hand motion, especially since the same hand will proba.bly 

be used tlirougliout tlie manipulation process, and if tlie system is to be ported to  another 

manufacturing environment, then the interface that  tracks specific features can be changed 



while maintaining modula.rity. On the other hand, determining the full optic flow seems to  

be essential for computing the object motion, as we might not know in advance any sha.pe 

or material information about the objects t,o be ma.nipulated. 

Many techniques were developed to estimate the optic flow (the 2-D image motion vectors) 

[3,9,15,19,22,42], we propose an algorithm for calculating the image flow and then we discuss 

a simpler version of the same algorithm for real time detection of the 2-D motio~i vectors. As 

a start ,  we can use a simple two-dimensional segtnentation scheme in order to identify the 

hand and the manipula.ted object within the ca.mcra view. The input image is tl~resholded, 

and all the "objects" within an image are identified. An objcct is simply cha.racterized by 

a region with a, space of a t  least one pixel stlrrounding it from every where, thus regions 

with holes can be easily recognized using this technique. An edge tracer can be used for this 

purpose. We can assume that the largest object in the figure is the lland and the second 

largest object is the manipulat.ed object, or we ca.n make our decision built on the knowledge 

we have regarding the geometry of the 1la.nd and/or the object. As mentioned before, specific 

features can be identified, for cxample, the corners, or have a picce of paper with specific 

features stuck on the ha.nd. 

h a  

Figure 11 : Identifying the SSD Optical Flow 

The image flow detection technique we use is based on the sum-of-squared-differc~rces optic 

flow. We consider two images, 1 and 2 as shown in E'ignre 11. For every pixel (x, y) in 

image 1 we consider a pixel area N surrounding it and search a neighboring area ,S' to seek 



a corresponding area in ima.ge 2 such t11a.t tlic sum of squared diffcrerlces in the pixel gray 

levels is minimal as follows : 

SSD(L, g) = ?in C [E(x + Ax,  y + Ay) - C ( i  + Ax7 6 + ay)12 
i , y € S  

A x , A y € N  

The image flow vector of pixel (x, y) then points from thc ccnter of N in the first image to  

the center of the best match in the second image. The scarch area S should be restricted 

for practicality measures. In the ca.se of multiple best matches, we ca,n use the one which 

implies minimum motion, as a heuristic fa.voring small movements. I t  should be noted that 

the accuracy of direction and magnitude of the optic flow dctcrmina.t,ion depends on tlie sizes 

of the neighborl~oods N and S .  

There axe three basic problclns with this simple approach, one is that  the sum of squared 

differences will be near zero for all directions wherevcr the gra.yleve1 is relatively uniform, tlie 

second is that  it suffers from the so-callcd "aperture problem7' even if thcre is a significant 

gra,ylevel variation. To illustrate this point, consider a, vertical cdge l~lovilig to the sight by 

one pixel dista~ice, and suppose the N window size is 3 x 3 pixels and thc S window size is 

5 x 5 pixels, tthe squared-differences at an edge point rcachcs it,s ~naxi~illinl for t,ltrec directjons 

as indicated by the vectors (in piscl displacements); (1,0), (1, -1) and ( I ,  I ) .  Figurcs 12.1 

and 12.2 illustrates the aperture problem. The third problem is that the schemc will only 

determine the displacement to  pixel accuracy. 

Figure 12.1 : T h e  Aperture Problem Figllrc 12.2 : Normal Flow Estimation 

T h e  direction of motion of edge E cannot be 

determined by viewing E through the aperture A 



We solve the first problem by estimating the motion only a t  the hand or object pixels (as 

determined by the two-dimensional seglnen tat ion scheme) where the intensity changes signif- 

icantly. The Sobel edge detector is applied to the first image to estiinate the edge magnitude 

M ( x ,  y) and direction D(x, y) for every pixel : 

where Ez and E, are the partial deriva,t,ives of the first image with respect to  x and y, 

respectively. The edge direction and magnitude is discretized depending on the size of the 

windows N and S. The motion is then estilnated a t  only the pixels where the gradient 

magnitude exceeds the input thrcsholtf value. Motion ambiguity due to the aperture problem 

can be solved by estimating only the normal flow vector. I t  is well known that the mot,ion 

along the direction of intensity gradient only can be recovered. Then we evaluate the SSD 

functions a t  only those locat,ions that  lie on the gradient directions and choose the one 

corresponding to  the minimal SSD, if more than one minimal SSD exist we can choose the 

one corresponding to  the slnallest n~ovemcnt, as described above. The flrll flow vector can 

then be estimated by using the following equation which relates the normal flow vector v',,, 

to the full flow vector v'. 

This method works under the assumption that the hand image motion is locally constant. 

Solving the over-determined linear system will rcsiilt in a solution for the full flow. The least 

square error of the system ca,n help us to decide whether the assumption is a reasonably 

valid one for determining the event that caused the transition in the DEDS. On the other 

hand, full flow deterinination can be performed for small clusters of points in the image and 

a number of full flow esti~nates is then used for 3-D recovery. 

To obtain sub-pixel accuracy, we can fit a one-dimensional curve' along the direction of the 

gradient for all the SSD values obtained. A polynomial of the degree of the nutnber of points 

used along the gradient can be used to obtain the best precision. IIowever, for an S window 

of size 7 x 7 pixels or less and an N window of size 3 x 3 or so, a quadratic function can 

be used for eficiency and to avoid optimizational instabilities for higher order polynomia,ls. 



Subpixel accuracy using a quadratic function is shown in Figure 13. Tlle subpixel optimum 

can be obtained by finding the minilnu111 of the function used and using the displacement a t  

which i t  occurred as the image flow estimate. To avoid probable disconti~iuities in the SSD 

values, the image could be smoothed first using a gaussian with a small variance. 

Figure 13 : Subpixcl Accuracy for Optical Flow 

A simpler version of the above algorithm can be implemented in real-time llsillg a multi- 

resolution approach [42]. We can restrict the window size of N to 3 x 3 and that  of S 

to  5 x 5, and perform the algorithm on different levels of the gaussian image pyra-mid. A 

gaussian pyramid is constructed by the successive applications of gaussian low-pass filtering 

and decimation by half. The pyramid processor, PVM-1 is capable of producing complete 

gaussian pyramid from a 256 by 256 image in one video frame (& of a, second). Maxvidco 

boards can be used for the simultaneous estilnation of image flow a t  all the levels o l  the 

pyramid for all the pixels. Ilnagc flow of 1 pixel a t  the second lcvel would correspond to  

2 pixels in the original image, 1 pixel displacement a t  the third level would correspond to 

4 pixels in the originad image, and so on. The lcvel with the srnallest least square fitting 

error of the normal flow can be chosen to get the full flow and the motion vector is scaled 

accordingly. This method is crude in the sense that it only allow image flow values of 1,2,4 

or 8 pixel displacement a t  each pixel, but i t  can be used for detecting fast rnovcments of the 

hand. 

By either using a flow recovery algorithm or a feature identif cation a.nd tracking algorithm, 



we end up having a set of v a l u ~ s  for 2-D displacements of a nulnbcr o l  pixels. The problem is 

how can we model the uncertainty in those 2-D estimates, which arc to be used later for 3-D 

parameter recovery. For example, if the estima.te is - for a specific 3-D feature - that pixel 

(x,, yJ)  has moved to pixcl (z,, y,), then the problem reduces to finding space probability 

distributions for the four indices. The sensor acquisition procedure (grabbing images) and 

uncertainty in image processing mechanisms for determining features are factors that  should 

be taken into consideration when we compute the uncertainty in the optic flow. In scctions 

5, G and 7 we discuss these probltms in deta.ils. 

4.2 Recovering 3-D events 

One can model an arbitrary 3-D motion in terms of statiollary-scene/moving-vitwcr as shown 

in Figure 14. The optical flow a t  the irnagc plane can be related to  the 3-D world as indicated 

by the followillg pair of equations for each point (x ,  y) in the irnagc plane [27] : 

where v, and v, are the ima.gc velocity a t  image location (2 ,  y), (V,y, IfI., Ifz) and (Rr;, R y ,  R z )  

are the tra.~lslational and rotational velocity vcctors of the observer, and Z is the unknown 

distance from the ca.mera to thc objcct. 

Figure 14 : 3-D F~rtnula t~ion for Stationary-Sccnc/Moving-Viewer 



In this system of equations, the only knowns are tlle 2-D vectors v, and v,, if we use tlie 

formulation with uncertainty then basically tlie 2-D vectors are random variables with a 

known probability distribution. In case that  tlie real 3-D rela tionships between feature 

points (on the hand) are known, then recovering tlie absolute depth is a simple process, The 

equations can then be be formalized, in case that  that  the 3-D features lie on a planar surface, 

as follows : 

where 2, is tlie absolute depth, 1, ancl q are the planar surface orientations. It should 

be noticed that  the resulting syste~n of equations is nonlinear, however, i t  has some linear 

properties. The rotational part, for example, is tots-lly linear. In section 8 we discuss different 

methods for solvii~g tlie system of equations and thus recovering the 3-D parameters in real 

time with and without uncert a,in ty formulation. 

A part of the events definition, as melitioned before, is the recognition of the existence of 

an object, for example. In other words, identifying objects in the visual scene and not 

only recovering 3-D motion. Orientation of the object relative to  the obscrvcr's camera and 

its shape can always be asserted by a simple 2-D segmentation strategy as nientioned in 

the discussion about computing tlie 2-D motion vectors. A data  base of different shapes and 

orientations for different sized objects with tlie associa.ted state that  they rnay be ~nanipulated 

in may be used and updated 11y the system. Correlation-based ma.tching techniques can be 

used to compare 2-D object represent,ations, while moment computations are used to scale, 

shift and re-orient the shapes to  he correlated. New objccts can still be recognizecl a.nd stored 

in this data  base to  facilitate future accesses. 

4.3 The Coiltrollable Events 

The only kind of control inputs that can be supplied to the observer robot are tlie tracking 

actions. Depending on the nature of the ma.nipulatioii process,, the observer lias to keep 

track of the hand and object within tlie camera image plane in such a wa.y so as to  be able to 

observe the process. The intelligent tracking colltrol is supplied by the DEDS formulation. 

Simple-minded tracking ideas, like kecping fixed 3-D relation between tlie ca.mera and the 



manipulating a.gent are not to be used in our system. The manipulation action might be a 

simple one that  does not require complex tracking, such as screwing and unscrewing, however, 

more complex events, where the ha.nd may occlude the ma.nipula.tion process, or when the 

hand starts movir~g away from the observer, might suggest the need for complex tracking 

mechanisms, including translations and rotations of the observing robot hand on which the 

camera is mounted. 

A subset of the three-dimensional motioil and structure parameters would have to be cal- 

culated using two or more frames [14,36,39,41]. The size of the subset will depend on the 

expected kind of 3-D motion, as the current state of the DEDS system will specify. Our 

system needs to track the object while using all the six degrees of freedom of the observer 

robot in order to position the observer a.t the best feasible position a t  clifferent states of the 

automaton. Using rotations only to follow the end effector of the manipulating robot is not 

sufficient for the stabilizing observer. 

Two kinds of tracking mechanisms can be used, in the first kind, the two images on which 

the motion estimation algorithms will be used, will be taken while the camera is stationary 

and then the camera will move and the process will be repeated after the carnera stops. The 

observer movement will be a "jerky" one. Another scllelne ca.11 be used where the camera can 

grab images while the robot arm holding it is moving, in this case one should co~upensate 

for the moving arm before calculatii~g the image flow of the hand antl/or object. Thus, the 

problem reduces to  finding the image flow due to the camera movement using the stationary- 

scenc/moving-viewer 3-D formnlation. In the absence of translations, for example, we can 

compensate for the rotational part in a very fast and eficient way. Compensa.tion will have 

to be performed before using the structure and motion recovery algorithms. Velocity control 

for moving the observer's camera can be used to match the moving agent's speed. 

5 Sensor Uncertainties 

In this section and the next two sections we develop and discuss modeling the uncertainties in 

the recovered 2-D displacement vectors. As meiltiolled in the section describing techniques 

for recovering the image flow, the uncertainty in the recovered values results from sensor 

uncertainties and noise and from t,hc irnage processitlg techniques used to extract and track 



features. When dealing with measurements of any sort, it is a1wa.y~ the case t11a.t the mea- 

surements are accompanied by some error. Mistakes also occur, where mistakes are not large 

errors but  failures of a system component or more. A clcscription of errors, mistakes and 

modeling them can be found in [4,5]. 
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Figure 15 : Image formation. 

In this section we discuss errors in ima,ge formation. The observer robot uses a camera to  

grab and register images of the manipula.tion system, so we need to know errors in ma.pping 



from the 3-D world features t o  the 2-D domain which we use in forming 3-D hypothesis ahout 

the task under supervision. The a.ccura.cy, precision and modeling uncertainty of the camera 

as our sensor is an important issue and the first step towards forming a, full ur~ccrtainty model 

for recovering the 3-D events in the observer automaton. 

In Figure 15 (redrawn from [5]), a model of the image formatioll process is illustrated, 

which lists some salient features of each colnponent. As a lot of the image processing a.1- 

gorithms compute derivatives of the intensity function, noise in the image will be amplified 

and propagated throughout the observation process. The goal of this treatrnent is to fixld a 

distribution for the uncertainty of rna.pping a. specific 3-D fea.ture into a, specific pixel value. 

In other words, if the feature 2-D position wa.s discovered to  be ( i ,  j ) ,  then the goal is to find 

a 2-D distribution for i a11d j, assuming that there is no uncertainty in the technique used 

to extract the 2-D feature, the tecllnique's uiicerta.inty will be discussed in the next section. 

The end product of modeling tlie sensor unc~rta.iuty is to be able to say a sta,tement like : 

"The 3-D feature F is located in the 2-D pixel position ( i ,  j )  with probability pl or located in 

the 2-D pixel position (i,  j + 1) with probability p2 or .... given that  tlie registered location is 

( I ,  m), such that  pl + p 2  + ..... +pn = 1, and ,A error in the 2-D feature recovery rnecha.nism." 

5.1 Iinage Forlllatioll Errors 

The errors in the image formation process are basically of two different kinds. The first type 

is a spatial error, the other type is a temporal error. Tlle spatial crror due to the noise 

characteristics of a CCD transducer can be due to luany reasons, among which arc dark 

signatures and illumination signa.tures. The technique to be used is to take a large number 

of images, we can denote the image intensity filnction as a. 3-D fi~nction I(?/,, v,2), with spatial 

arguments u and v and temporal argument t .  The sample mean of the image intensities over 

N time samples can he  denoted by T(u ,  v). 

The spatial variance in a 5 x 5 neighl~orl~ootl of the means is computed by: 



The  dark signature of the camera can be determined by computing T(u, v)  of each pixel with 

the lens cap on. It will be found that a small ni~mber of pixels will 1ia.ve non-zero mean and 

non-zero variance. The specific pixel loca,tions are blemished and should be registered. The 

uniform illumination is computed by placing a nylon diffuser over the lens and computing 

the mean and variance. It will be noticed that  due to digitizing the CCD array into a pixel 

array of different size, and the difference in sa,~nple rates between the digitizer and camera, 

the border of the image will have different mean and variance from the interior of the image. 

Some "stuck" pixels a t  the location of the blemished pixels will also be noted. The  contrast 

transfer function will also be noted to  vary a t  diflerent distances from the center of the lens. 

Temporal noise characteristics can also be identified by taking a number of experiments and 

notice the time dependency of the pixels intensity function. 111 our treatment and for our 

modeling purposes we concentrate on the spatial distribution of noise and its erect on fiildirig 

the 2-D uncertainty in recovering a 3-D feature loca.tiot~ in the pixel array. 

5.2 Calibration and Modeling Uncertainties 

Methods to  compute the translation and rotation of the camera with respect to  its coordi- 

nates, as well as the camera para.meters, such as the focal length, radial distortion coeffi- 

cients, scale factor and the image origin, have been dcvcloped and discussed in the literature 

[8,21,37]. In this section we use a stattic camera calibra.tion tecllnique to 111otle1 the uncer- 

tainty in  3-D to 2-D fcaturc locations. In particular we use the scqucncc o l  steps 11sccl to 

transform from 3-D world coordinates to computer pixel coordii~ates in order to recover thc 

pixel uncertainties, due to  the sensor noise characteristics described previously. 

As shown in Figure 16, the sequence of steps is used for a. cop1ana.r set of points in order 

to  obtain the rotation and translatioil matrices, in addition to  the ca.mcra. parameters. The 

input to  the sys te~n  are two sets of coordinates, ( X j ,  l j ) ,  tvhich a.rc t,he cornpuler 2-D pixel 

ima.ge coordinates in frame memory a.nd (x,,,, y,,,, z,,,), whicl~ are the 3-D world coordinates 

of a set of coplanar points impressed on a piece of paper with known inter-point distances. 

A discussion of the exact n~athematical formulation of the inter-step c~mputa~t ions  to find 

all the parameters can be found in [a]. 
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Our approach is to trea.t the wholc camera systcnl as a black box and make input,/output 

measurements and develop a model of its pa.ra~nctric behaviour. The next step is to utilize 

thc recovered caincra parameters ant1 t,hc nu~nbcr  01 3-D points wllich wc created in orrler 

to  formulate a distribution of thc 2-11 nnccrta.inty. The points used in calibration ant1 latcr 

in recovering the distribntion call be tlle actual 1ea.tures on the robot hand that  are to be 

tracked and thus providing a similar cxperimeiltal cnvironmcnt to tllc one that  the observer 

will operate in. 

The strategy used to  find the 2-D uncertainty in the features 2-D representation is to  utilize 

the recovered camera paralncters and the 3-D world coordina.tcs (z,, y,, 2,) of the known set 

of points and conlpute the corresponding pixel coordinates, for points distributed throughout 

the image plane a nu~nber  of times, find the actual fcalure pixel coordi~la.tcs and construct 

2-D histograms for the displacements from the rccovcred coordinates for the expcrimcnts 

performed. The number of the experirne~lts giving a certa.i11 displacemcnt crror would bc 

the z axis of this histogram, while the x and y axis are thc displaccnient crror. Diffcrcnt 

histograms call be used for different 2-D pixel positions tlistrihutcd throughout tllc iinage 

plane. The three dimensiona.1 histogra~n fullctions are then normalized such that  the volunie 

under the hist0gra.m is equal to  1 uriit volume and the reslilting normalized function is iised 

as the distribution of pixel displacemcnt error, thus modeling thc sensor unccrtai~ity. The 

black box approacl~ is thus used to modcl errors in a sta.tistica.l sense. 

6 Image Processing Uncertainties 

In this section we describe a tech~liquc by wllicll dcvelopi~~g uncert,ainlirs due to the irnagc 

processing strategy can be modeled. In acldition, we cnd the discussion by combining both 

the sensor uncertainties developed in the previous scction and the inodcls developed in this 

section to genera.te distribution models for the unccrtainty in estimating the 2-D motion 

vectors. These models are to be used for determining the full uncertainty in recovering t,hc 

3-D events that  causes state transitions between states of thc obscrver automaton. 

We start  by identifying some basic ineasures and ideas that  arc ilsetl frcqnently to  recognize 

the behaviour of basic image processing a.lgorithms ant1 tllcn proceed to describe the tcch~lique 

we use in order to conipute the crror ~notlel in locating certain lcaturcs from their 2-D 



represelltation in the pixel array. We concent.rate on modeling the error incurred in extra.cting 

edges, as edge extraction is a very popular mccllanisn~ that  is used for both identifying feature 

points on the ma,nipulating hand and also for computing 2-D contours of the object under 

supervision. When we disclsssed flow recovery techniques before, i t  was discussed in tletails 

that  the optic flow recovcry algorithm  sing 1oca.l matclling works well for the ii~teilsity 

boundaries and not for the inside regions. 

6.1 Edge Extraction U~lcertaiilties 

Edge extraction strategies and methods to evaluate their performance qualitatively ant1 quan- 

tatively have been presented and discussed in tlle literature [11,13,24,29]. There are sna.ny 

types of edges, ideal, ramp and noisy edges as show~r in Figure 17 axe only tllrce of them. 

Different curvatures in the edges also constitute aaother di~nension to 1)c taken into consid- 

eration when it comes t o  asserting the types of edges t1ra.t exist. 

Noisy Edge Ra.mp Edge Ideal Edge 

Figure 17 

The goal of developilig the error lllodcls for edge cstractiorl to to  be amble to  say a s ta tc~ncnt  

like : "Given that  the 2-D feature recovered using the edge recovery ,S is in pixel position 

(2, g), then there is a probability that  tlre feature was origirrally a t  pixel position (zt 1, I/) with 

probability pl or .... etc. due to  the noise in the pixel image, such that  pl t p2 t .... t p, = 1." 

The problem is t o  find the probabilities. 

I t  should be obvious that there may be different types of i~oises and also different levels of 

those types that  might vary at different locations in the sensor image plane. This adds to 



the different models that  we might haeve to construct. Our a.pproa.cl1 is to use ideal, t1ia.t 

is, synthesized edges of different types, locations and also orientations in image fra.mes then 

corrupt them with dificrent kintls ant1 lcvels of noises. We know the ideal eclgc points from 

the ideal irnage, for which we shall use the edgc detector that  is to be used in the observer 

experiment. The corrupted images will then be operated ~ ~ p o n  by the dctcctor and the edge 

points located. The edge points will differ froin the idca,l i~nagc cdgc points. rIllle 1)rohlenl 

reduces to  finding corresponding edgc points in corrilptcd and ideal images then finding the 

error along a large number of edge points. A 2-D histogram is tllen constructed for the 

number of points with specific displacement errors from the ideal point. The volume of 

the histogram is thcn normalized to be equal to  1, t,lle resulting 3-D function is the 2-D 

probability density function of the error of displaccrr-rents. 

In Figure 18, an ideal box is drawn, then corrilptcd with a.n adclitivc ga.ussian noise with a 

equal to  3, 10, 20, 30 and 50 respectively a.nd then the edgcs conlputed a.s shown. 111 the box 

there are four different kinds of ideal edges (different oricnta.tions with the object inside or 

outside of the background). The corrcspondcnce between edge points in the corrupted and 

ideal is established by choosing the point with the ri~,iizimu~r!dist,a.nce from tlle ideal ctlgc point, 

S U C ~ Z  that i t  does slot correspond to  anot,hcr ideal edge point. Thc 11istogra.111 is constructed 

for each edge and then normalized. For practicality measures, the process can be repea,tcd for 

orientations differing by 15O a,nd tlie set of distributions preserved. Whenever tlie observer 

automaton deals with a specific edge while extracting features, the corresponding distribiltion 

is referenced. 

6.2 Computing 2-D Motion Uncertainty 

In this sectioil we describe how to combine scnsor a.nd strategy error modcls to  compute 

models for the recovered image flow values. To simplify the idea, lct's assume that we 11a.v~ 

recovered a specific feature point (x i ,  yl)  in an  image grabbed a t  tirrle instant t and t h ~  

corresponding point (xz,  yz) at time t $1.  The problei-rl is to figure out the distribution of I),. 

As an example, to explain the procedure, lct's assurne that  fronil the 3-D sensor distribution 

we have have cornputed the marginal dcnsity function of the x coordinate of z l  in the point: 



where R is all the  possible y values within tile sensor uncertainty model. 

Figure 18 : Edge Detection Results for Different Noise Levels 
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The same process is applied for the strategy distribution and another function is recovered. 

To simplify things, lets assume that both distributions looks like the distribution in Figure 19, 

that  is, there is an equal probability equal to 4 that the x coordinate is the same, or shifted 

one position to t l ~ e  left or the right. Cornbini~lg both distributions in a filtering-through 

process would produce the distribution shown in Figure 20, which is the error probability 

density function of having the 3-D feature x 2-D coordinate in the recovered image 2-D x 

position. Further more, assume that  x2 distribulion is the sa,me. 

- 1 0 1 

Figure 19 : Distribution of the s-coordina.te 

Figure 20 : Combined Sensor a,nd Stratcgy Distribution 

The proble~n reduces to finding the distribution of tllc optic flow x component, using these 

two combined distributions. As an example, if xl = 10 aald 22 = 22, then all probability 

statements can be easily computed, a set of some of these probability statement is shown : 

P(v, = 8)=P((z l  = 12) A (x2 = 2 0 ) ) ~ :  x i=& 



Consequently, all distributions and expected values can be computed from the combination of 

the sensor level and strategy level uncertainty formulation. Those flow models are tllen passed 

to  the higher levels for 3-D recovery. In the next section we discuss a method for refining the 

measured 2-D motion vectors and we then proceed to formulate t,he 3-D modeling of events 

as defined by the observer autoniaton. 

7 Refining Image Motion 

In this section we describe a method to refine the recovered 2-D motion vectors on the 

image plane. Ilaving obtained from the sensor and extra.ction strategy 1incerta.inty levels 

distribution estimates for the i~nage  flow of the diffcreiit features, we now try to eliminate 

the unrealistic ones. We concentrate on the flow estimates for the motion of the inanipulating 

hand and develop a. technique that is to be used during the observation process as a means 

t o  reject faulty estimates. Faulty estima,tes can results from noise, errors or ~ilistakes in 

the sensor acquisition process, ~naniplilation or visual problc~ns like occlusion, modeling the 

uncertainties in the previous two levels ma,y still leave rooin for such anomalies. 

We assume that  the features to be tracked on the hand lie on a planar surface or that 

segmenting the hand as a polyhedra, object into planar surfaces is simple, although the mod- 

ification would be very simple to allow for arbitrary 3-D positions of the feature distribution. 

Since we know a-priori some informa.tion ahout the inecha.nica1 capabilities and limitations 

and geometric properties of the ]land, also about the rate of visual sa~npling for the observer, 

since we actually control that ,  we might be a.ble to assert some limits on some of the visua.1 

parameters in our system. 

To illustrate the idea behind the approach, consider Figure 21, assume all the curves are 2-D 

parabolic functions y = ax2 + bx + c, if the set of dat,a points a.re as shown in the figure, thcn 

a least square error fit will produce the function D. However, if we linow some upper and 

lower limits on the values of the cocficients a,  b and c then we might be able to construct 

an  upper and lower function pa.ra.bolas A and C as a.11 enclosing envelope, outside which we 

can reject all the da.ta, points. In that casc, we can do a fit for the points that  lie inside the 



envelope and obtain a more realistic function as shown by the curve 13. 

X 

Figure 21 : Fitting Para.bolic Curves 

The situation for rejecting estimates for the image flow is not rnuch different. We know 

equations that  govern the bellaviour of the image flow as a function of the structure and 3 - 0  

motion parameters, as follows : 

Which are second degree functions in .z and y in three dimensions, v, = j l ( x ,  y) and v, = 

f45, Y). 

In addition, we know upper and lower limits on the coeflicients p, (I, ITx, I+, Ifz, ax, Or*, 

Q Z  and Z,, a.s we know that  the mecl~a~nical abilities of the robot a.rm holding the hand will 

make the relative velocity and distance between the camera impossible to exceed specific 

values within visual sampling timing period. So the problem reduces to constructing the 

three dimensional envelopes for v, and v, as the worst case estimates for the flow velocity 

and rejecting any ineasured values that lie outside that  envelope. Figure 22a indicates the 

maximal v, tha t  can ever be registered on the CCD array of the camera, the x and y are in 



millimeters and the x - y plane represents the CCD image plane, the dcpth Z is the maxinlal 

v, in millimeters on the CCD arrasy that  ca.n ever be registered. Figure 22b indicates the 

minimal v,, it ca.n be iloticed that they are sym~netric duc to the syrnmetry in the limits of 

the coefficients. 

Figure 22.a : Maximal v, Figure 22.b : Minimal v, 

-* 'I- 

n . ,  -".' 

Figure 22.c : Maximal Flow Ma.gnitude 
Figure 22.d : Minima.1 Flow Ma.gnitude 



As an example, wc write the equation governing t,hc ~ua,xinlum v, value in the first qiladra.nt 

of the x - y plane (zf,  y+). 

where the subscripts s and 1 denote lower and uppcr limits, respcctivcly. At first sight 

the problem of determining the maximum value of v, seems to  be a constrained non linear 

optimization problem, which is true, howevcr, assuming that  the upper and lower limits of 

the coefficients are equal in magnitude and opposite in directions (except for Z,, which is 

used only as 22) makes the input to the n7nx and mir~ fiinctiolls in the a.bove equations 

always equal and thus providing one more degree of frcedom in choosi~ig the parameters and 

making the choice consistent throughout the equation. Thus the problem I~ccomes simply to  

write eight equations as the above one for each of v, and v,, to draw thc function in each of 

the four quadrants for maximum and mi~linlurn envelopes. We shall not rewrite the sixteen 

equations here, but we show the rcsult,~ for v, in Fjgurcs 22a and 2211, Figures 22c and 22d 

are the maximum and minilnum ma,gnitude m(x, y) for tllc the ima,ge flow a t  any given point, 

where : 

It should be noted that  the ~naximum absolrite possible valuc of the image flow is ~ninimal 

a t  the origin of the ca*mera, i~na,ge plane and increascs quadratically as the distance increases 

from the center. 

The above eilvelopes ase then used to  rejcct unrealistjc 2-Jl velocity estima,tes a.t diflcrent 

pixel coordinates in the image. As a furt,ller note, i t  should be mentioned that some on- 

line elimination procedures can be irnplcmcnted depending on the current positions in the 

observer automatotl, for example, the image flow field tends to a.ssume certain configurations 

in the image plane depending on the 3-D motion, independent of the object's or the ha.nd's 

structure, if the ~uotion is only relative rotatio~lal ~elocit~ics, the flow vectors all tend tllrough 

pass from the sa,me point. In other words, in addition to off-line a-priori estimation of 

the envelopes and on-line testing of ineasurcments, we can also develop custom rejection 

techniques for certain observer automata states. 



8 Recovering World Events 

In this section we describe differcnt tecllniqucs for recovering the 3- D cvents. In particular 

we utilize the refilled 2-D motion distributions t,ha,t were computed in the previolss levels in 

order to  achieve a robust estimation of the three dimensio~~al motion and structure vectors 

of the scene under observations. We develop some techniques for finding estimates of thc 

required parameters and discuss mathematical formulations that  will enablc us to  dctcrrnine 

the 3-D event distributions. 

We concentrate in our trea,tment of the subject on determining the ma,nipulating hand pa.- 

rameters, as the hand configura.tion is well dcfined, we also continue using the assumption 

that  the feature points lie on a. p1a.na.r surfa.ce. As aagued before, the extension to  a.rbitraay 

collfigrira.tions is straight forwa.rd. The object hehaviour can be i.sscrted usiilg simi1a.r tech- 

niques and/or by observing conveniently loca,t,etl surfa.cc pa,tches under similar assumptions. 

We sta.rt by describing a, deterlninistic niethod to recovcr 3-I) pa,ra.meters, then we describe 

other approximate methods and we.conclude by discussing some ma.thema.tica1 formula.tions 

for using the same techniques for recovering va.ria.ble distributions of the world events at  

different observer states. 

The problem of recovering scene structure a.nd the camera. motion relative to thc sccne has 

been one of the key problems in comput,cr vision. Many techniclucs havc bccn devclopcd 

for the estima.tion of structure ant1 lnotion paramctcrs ( Tsai and IIuang [3G], MTcng et al. 

1411 etc.). A lot of existing algorithlns depend on cva l~a t~ ing  thc motion parameters bctwccn 

two successive frames in a sequence. IIowever, rcccli t rcsearch on structure and motion has 

been directed towards using a large number of frames to cxploit the history of parametric 

evolution for a more accurate cstimation and noise rctluction ( Ullrnan [39], Grzywacz and 

IIildreth[l4] etc.) 

Next, we describe a method for rccovcring thc 3-D motioll and orientation of thc planar 

surface (on which lies the 11a.nd feakures) from an evolving image sequence. The dgorithin 

utilizes the image flow velocities in order to recovcr the 3-D parameters. First, we tlcvelop 

an algorithm which itera.tivcly i~llproves the solution givcn two succcssivc irnagc frames. The 

solution space is divided into three sllbspaccs - the translational motion, the 1-ota.tiona1 rnotio~i 

and the surface slope. The solution of each subspace is updated by using the current solution 



of the other two subspaces. The updating process continues until the motion parameters 

converge, or until no significant irnprovernent is a.cliieved. 

Second, we further improve the solution progressively by using a largc ni~nlber of image 

frames and the ordinary differential equations which describe the evolution of motion and 

structure over time. Our algorithm uses a, weiglited average of the expectetl para.mcters 

and the calculated parameters using the 2-frame iterative algorithm as current solut,iorl and 

continues in the same way till the end of the frame scqnence. Thus i t  keeps t,ra.ck of the past 

history of parametric evolution. 

The solution is further improved by exploiting the temporal coherence of 3-D motion. We de- 

velop the ordinary differential equations which describe the evolution of motion and strlictt~re 

in terms of the current motion/struct.ure and the  measurement,^ (the 2-D motion vect,ors) 

in the image plane. As an initial step we assume that the 3-D motion is piecewise uiiiform 

in time. The extencled I<alman filter is then used to update tlie~solution of the differential 

equations. 

8.1 A 3-D Recovery Algorithm 

One can model an  arbitrnry 3-D motion in terms of stationary-scene/moving-viewer as sllown 

previously in Figure 14. The optical flow a t  the image pla,ne can be related to the 3-D world 

as indicated by tlie following pair of equations (In case of a, planar surfa.ce), for ea,ch point 

(x,  y) in the image plane : 

where v, and vy are the image velocity a t  image location (n:, y), (Ifx, IfI(, Ifz) and (Ox,  RIr, Rz )  

are the translational and rota.tiona,l velocity vectors of the observer, p and q are the planar 

surface orienta.tions. The situation becomes, for each point, two equations in ciglit unknowns, 

namely, the scaled translational velocities If,y/Z,, lflr/Z, ant1 Ifz/Z,, the rotational velocities 

R x ,  fly and flz and the orientations 11 and q. Differential methods could be used to solve 

those equa-tions by differentia.ting tlie flow field and by using approsimate met~hods to find 

the flow field derivatives. The esisting incthods for computing the derivatives of the flow 



field usually do  not produce accura,te results. Our algorithm uscs a discrete method instead, 

i.e, the vectors a t  a number of points in the pla,ne is determinet1 and the prohlem reduces to  

solving a system of non1inea.r equa,tions. 

I t  should be noticed that  the resulting system of cqllations is nonlinear, however, it 11as some 

linear properties. The rotational part, for example, is totally linear, also, for any combination 

of two spaces a.mong the rotational, transla.tiona1 and slopc spaces, the syslcm bcco~nes lincaa. 

For the system of equations to be consistent, we necd the flow estimates for a t  least four 

points, in which case there will be eight equa-tions in eight unknowns. 

8.1.1 Two-Frame Algorithm 

The algorithm takes a.s input the est,ima.t,e of the flow vectors a t  a number of points 2 4 

obtained from motion between two imagcs. It iterates updating the solution of each subspace 

by using the solution of the other two subspaces. Each update involves solving a linear system, 

thereby it requires to solve threc 1inra.r systems to complete a. single iteration. This process 

continues until the solution converges, or until no significant improvement is made. The 

algorithm proceeds as follows : 

1. Set p, q = 0; 

input the initial estima.te for rota.tion ; 

Solve the 1inea.r system for tra.nslation; 

2. Use the tra.nsla.tion and rotahion from step 1 ; 

Solve the linear system for the slope ; 

3. Set i = l ;  

While (i < Max. 1tera.tions) a.nd (no convergence) Do 

Solve for the rota.tions using latest estimates of translations, 11 and q; 

Solve for the tra.nslations using 1a.test estima.tes of rotations, p and q ;  

Solve for p, q using latest estimates of transla.tions a,nd rotations; 

end While ; 



8.1.2 Complexity Analysis 

As we mentioned earlier, one sho111d notice in the equations relating the flow velocities with 

the slope, rotational and translational velocities that  they are "quasi-linear" , if one can say 

so. The  equations exhibit some linear properties. This suggests that  a purely iterative tech- 

nique for solving non-linear equations might not be a.n excellent choice, since, the va.riables 

are linearly related in some way. To think of a way of "inverting" the rela.t,ions might be 

a good start ,  although to do that  without a framework based on iterating and gravitating 

towards a solution is not a good idea,. 

This makes one think of ampplying a method which converges faster than a, purely itera,tive 

scheme like Newton's methocl. IIowever, the coniplexity of Newton's method is deterniined 

by the complexity of computing the inverse Jacobia,n, which is of an  order of N3, or N2." 

multiplica.tions as the lower bouncl l~sing Strasscn's tcchniqne. In our case, since we have 

ant least 8 equations in 8 unknowns, the colnplexjty is of order s3 = 512 multiplica.tions a.t 

every iteration, and the method does not make any use of the fa.ct t11a.t the set of equa.tions 

a t  hand exhibits some linear properties. 

Tile algorithm proposed, on the other hand, ~na~kcs  very good use of the fa.ct that there a,re 

some linearity in the equations, by inverting the set of relations for each subspace a t  every 

iteration. The complexity a t  every iteration is of the ordcr of the complexity of computing 

the pseudo-inverse which is of the order of ( 33 + 33 + 2 9  imultiplications art each iteration, 

where the first 3 comes from solving the systcin for the rotational variables, the second 3 is 

for the translations, the last 2 is for p and q .  This is equal to  62 multiplications a t  every 

iterakion, which is significantly less tl1a11 the 512 multiplica,tions in a, methotl like Newton's 

for example. It was noticed that  the algorithiti converged to solution in a, vcry small nutnber 

of iterations for most experiments we have conducted so far. Thc masimuln number of 

iterations was 6. 
-, 

Using the latest solution obtained fro111 the two-frame a.na.lysis as the initial co~ldition for 

the next two-frame problem in the image sequence would further decrease the complexity, 

as the next set of parameters would, most probably, he close in values to the current pa,ram- 

eters, thus the number of iterations needed to converge to tlle new solution would decrease 

significantly. 



8.1.3 Observations 

a The  algorithm is not sensitive to the initial condition of the orientation parameters. 

The plane is simply assumed to be a frontal one a t  the beginning. The slope paraaneters 

evolves with iterations. 

a The algorithm is sensitive to input noise just like other existing algorithms, some ex- 

periments shows the sensitivity with respect to the change of viewing angle. Simila.rly, 

the algorithm performs better for a large number of points that are evenly distributed 

througllout the planar surfa.ce, t11a.n it does for clustered, smaller number of image 

points. 

a It is proven that  there exists dual solutions for such systems. IIowever, if our method 

gravitates towards a "fixed point" in t,lre solution space we can find the other explicitly 

in terms of the first one from the rela~tfions given by Waxman and Ullma.11 [40]. 

8.1.4 Multi-Frame Algorit hin 

The ordinary differential equations tha.t describe the evolution of motion and structure pa- 

rameters are used to find the expression for the expected parameter change in terrris of the 

previous parameter estimates. The expected change and the old estima.tes are then used t o  

predict the current motion a.nd structure parameters. 

At time instant t ,  the p la~la t  surface equation is described by 

To compute the cllange in the structure pa,ra.incters during the tiine interval dl, we tliflcren- 

tiate the above equation to get 

d Z  d X  1 dl' dq  dZ, 
- = p - + X - + q - + K - + -  
dt  nt d t d t  d l  d l  

The tiine derivatives of (X, Y, Z )  in the a.bovc expression are given by the three components 

of the vector - (V+RxR) that represent the relative motion of the object with respect to  the 

camera. Substituting these components for the derivatives and the expression pX + qY t Z,  

for Z we caa get the exact differentials for the slopes and Z,  as 



Using the above relations, we can compute t , l~e  new structure pa.ramctcrs a.t timc t + dl as 

p = p +  d p ,  q '=  q + dq a.nd Zo = Zo + dZo 

Thus the slope pa.ra.meters evolve a.t time t + dl, a.s follows : 

The new tran~la~tional  velocity I/ a t  time t + d l  can be foillld in the a.bscncc o l  a.ccelera.tions 

from 

Dividing v by 2, we get the new expected scaled t ra~~sla t ional  velocity components a t  timc 

1 + dl a.s follows : 

where s is expressed as follows : 

The expected rotational pa,rameters a.t time t +d t  remain equal to their values a t  time t since 

and thus 

Our first multi-frame algorithm uses a weigllted avera.ge of the expected parameters a t  time 

t + dt from the a,bove equations and the calculated parameters using the two-frame iterative 



algorithm as the solution a t  time t + dt, and continl~cs in the same way until the end of the 

frame sequence. Thus it keeps track of tlie past history of para.metric evolution. We further 

develop the first multi-frame algorithm to exploit tlie temporal coherence of 3-D motion. 

We develop the ordinary differential equakions which describe the evolu tioii of motion and 

structure in terms of the current motion/struct,urc and the two-dimensional flow vectors in tlie 
... 4 

image plane. We assume that  the 3-D motion is pieccwise ~ ~ n i f o r m  in time, i.e, R = V = 0. 

We then use the equations expressing tlie time derivative of thc slope derived above and 

the fact that  the derivative of tlie rotational vclocit,ics is zero a.nd develop the followiiig 

expressions for the scaled translational velocities and the depth 2, : 

The extended I<alman filter is then used to update the solution of the differential equations. 

Where the state vector call be written as : 

X = [ 14- 147 I;, Qx fly p q ] 

and the measurement vector is expressed as : 

& & & & & &  
= [ 'Y 6, 6, 6y 6y 61 61 1 

The beliaviour of the two-frame algorithm and the multi-frame algoritlu~i can be conceptual- 

ized as a control system as shown in Figurcs 23a and 23b.Pa.rallel implementations could be 

designed for tlie system, thus solving for the structure - ~notioll paraliietcrs for each si~rface 

separately. In fact, solving tlie linear system a t  each iteration could also be parallclized. 

Extra processing is needed to  scgmeub the polyhedra-like hantl into separate planar surfaces. 

Structure / Motion Recovered Parameters 
Two - Frame 

Algorilhm I-- 
Figure 23.a : Two - Fra.me Algorithm 



Figure 23.1): Multi - Fra.mc Algorithm 

8.2 Other Algorithr~ls 

Solution 
t 

Image Two - Frame 

Algorithm 

There are other non-iterative techniques for rccovcring the 3-D parameters resulting from 

2-D motion between two frames. The methods that  will be mentioned here rely on specific 

assumption regarding the hand's geometry and/or world manipulating actions. Assuming 

that  the actual rela.tions between ieakure points that  lie on the halid plane is well defined 

than a closed form solutio~l for the structure parameters and depth can be estimated by 

using a method like the one described by Fischlcr and Dolles [12]. The motion para.mctcrs 

A 

Mechanism 

Initial 
Zonditions 

Updating 

can then be easily recovered by solving a, 1inca.r system in six parameters. 

I t  should be noticed that  we try to use alternative mcthods in order to niakc the sys tc~n of 

equations "as linear as possible", the motive behind t11a.t is the fact t11a.t linear syste~ns can 

be solved in a pseudo-real time framework for a relatively snlall number of feature points and 

in addition a closed form solution always results. Another idea is to assume tha,t the surfa,ce 

of the manipulating hand is frontal a t  thc time of capturing the frame to be processed with 

the previous one, thus p and q are equal to  zcro, and the problem reduces to solving a 1inca.r 

system in six parameters for the motion parameters, while tlie depth is easily colnputed by 

knowing the 3-D distance between any two feature points, thus Z,  is cqual to  : 

where f is the focal length of the lens, 1 is tlie real 3-D distance between two featurc points 

on the hand and (xl ,  yl) and (x2, yZ) asre the CCD coordinates of the two image points. 

The assumption here being that  the observer always 1oca.tes itself to a. position in which 



the hand is frontal with respect to the camera image plane, and that  ma,nipulating move- 

ments while the camera is moving and during computations is negligible. Other formulations 

may attempt to find pseudo-close form s o l ~ ~ t i o n  of the non-1inca.r second order system and  

other assumptions, like the absence of rota,tional and/or trans1ation;ll motion retluccs the 

complexity significantly. 

8.3 Recovering 3-D Uncertaiilties 

Ilaving discussed methods for computing the three dimensional motion vectors and structure 

parameters between two image frames, we now use the same formulations descrihctl earlier 

for 3-D recovery but using 2-D error distributions as estima.tes for motion and/or feature 

coordinates in order to  compute 3-D uncertainty distributions for the real world motion 

vectors and structure instead of single values for the world events. 

As an example to illustrate the idea., let's assume that  we have a linear system of equa.tions 

as follows : 

The solution of this system is very ea.sily obtained as 

Tha t  is, a linear combination of the right hancl side parameters. If the parameters 21 and 

zz were random variables of known probability distributions instcad of constants, then the 

problem becomes slightly harder, which is, to  find the linear combination of those random 

variables as another random va.ria.blc. The obvious way of tloing this woultl be to use convo- 

lutions and the formula. : 

for the sum of two ra.ndom variables X I ,  X 2  for any real nulnber 9 and/or the formula for 

linear combinations over the region X, which is for all z such t11a.t Px,,x,(z,y - z )  > 0. 



Using the moment generating function or the characteristic function seems also to  be a very 

attractive alternative. The moment genera.ting function Ad of a linca,r combination of random 

variables, for example X I ,  X2 can be written as : 

Max, + b ~ ~ + ~ ( t )  = expCt (A!,, (al)Mx2 ( b t ) )  

for independent random variables X I ,  X2. That is, the problern of solving linear systerns on 

the form Ax = 6 ,  where b is a vector of random vaxiables, ]nay be reduced to  finding closed 

form solutions for x in terms of tlie ra.ndom parameters (using any elimination technique) and 

then manipula.ting the results and finding different expectations using moment generating or 

characteristic functions. 

The 2-D to  3-D conversion problem, a s  discr~ssetl in dctails earlier, is a non linear sysf,cni on 

tlie form F ( x )  = 6 where b is the vector of 2-D random variables obtained from the previous 

levels. An approach to solving this system might be to try and approximate mathematically 

the problem to  finding the roots using an iterative technique which calclllatcs the Jacobian 

a t  every iteration and use Newton's method iterative formula for an over-determined system 

a t  the n th  step as follows : 

where J is the Jacobian of the system, however tlie Jacobian and F will contain positional 

and motion random variable nonlinear combinations a.t every iteration and we 1nay have to 

use the following fo r~ l~u lae  for product and qi~otient of random variables : 

Obviously, such elaborate computations a,t every stage of descending towa.rds a, solution for 

the non-linear combinations of random va.riables is very 1ia.rd and cxpcnsivc to compute in 

pseudo-red time, if not impossible. 

The solutions we suggest to this problem of funding the random va,ria.blc solution for tlre 

3-D parameters utilize the techniques we described in the prcviolis two snbsections. Using 



either the two-frame iterative technique or the closed form algorithms, it should be noticed 

that  the problem reduces to  either solving iii~rlti-linear system5 or a single one. In tha.t 

case, using elimination and characteristic functions for computing the required expectat,ions 

and/or distributions is straight forward, as all the systelns become linear or pseudo-linear. 

In the iterative two-frame algorithm expectations can be used to avoid multiplication of 

random variable estimates for the structure and tra.nsla.tiona.1 parameters when solving for 

the rotational random varia.ble error pa.ra,metcrs. Also, the same can be used for the positional 

parameters on the CCD camera array. 

Thus, we have suggested algorithms for the quick estimation of the 3-D uncertainties in 

the structure and motion of the lnaiiiplllatiol~ system. The next step would be to refine 

these estimates and use them for asserting the world events with uncerta.inty modeling and 

compensation. This will be described in the following two sections. 

9 Refining World Events 

In this section we describe techniques for elimina.ting and refining tlie 3-D models of ma.- 

nipulation under observatioll, whose recovery was discussed in the previous sect,ions. In 

particular, we discuss a strategy to reject improbable events that llligllt h a ~ e  been computed 

due to  noise and uncertainties that  were not con~pensa~ted for in the distribution formulation, 

also because of unsmooth visual artifacts. We employ both existing knowledge a b o ~ i t  the 

mechanical properties of the ma.~lipulation and also knowledge from the current stake of tlle 

observer automaton. 

We concentra,te our treatmellt of the subject on tjhe three dili~cilsjonal behaviollr of the halld 

that  is used in manipulation. The 1ia.nd is assumed to be a, well defined entity, and as we 

me~itioned before, cha.nging the hand and/or its characteristics can be modeled by simply 

plugging in a module that describes tlie new characteristics, the same hantl is used tthroug1i 

out  the entire rnanipula tion activities. 

Knowing the joint limits of the manipulating robot will enable us to reject i~nprobable rccov- 

ered 3-D motioi~ vectors, that col~ld not have occurrcrl in  the real 3-D world. As an example, 

assuming that  we use a gripper with two "clatvs" having only one degree of freedom, the i~ ,  

obviously, any recovered 3-D rotational velocities for the claws should be rejected. Unreal- 



istic slope estimations should also be rejected, knowing the robotic reachability of the end 

effector, with respect to  the viewer. 

The current position in the observer a,ntomata will allow refining the recovered 3-D event 

distributions, as  it might well be the case that impossible manipulation a,ctions a t  a specific 

manipulation stage are recovered. It is impossible, for example, due to  the visual sampling 

rate, that  the hand is in and upright position holding a nail in the center of the image plane 

a t  a time step, then having it disappear or hold another object at  a dramatical distant 3-D 

position in the next time step, unless, of course a manipulation or viewer system failure 

has happened. In that  case, some designated fa,il state should be accessed, discarding the 

recovered parameters. Limits on Ifx., Vy,  Ifz, Rx ,  f ly ,  Rz and Z arc asserted for every 

observer subset of states, and used for rehling the recovered 3-D world events. 

10 Navigating the Observer Automaton 

At this point in the hierarchy of recovery and uncertainty levels, we have established methods 

and algorithms for recovering the refined three dimensional velocity and striicture of the 

scene under observation. In addition, we cornplltcd the distribution of the uncertainty in the 

numerical values of the parameters in real-time. For example, the computed value for the 

translational velocity Ifx nligllt be a randorn variable lying between two values If1 a.nd V2 

with a known probability distribution 3. The same applies for all the other paramcters for 

the different components in the scene. 

The problem now is how to malie use of these distribution values in order to  be able to 

navigate in the obscrver automalton as  defined in section 2 a.ntl dcmonstratcd by exa,mplcs in 

section 3. In other words, hsving built the DEDS a.utornaton nlodel of the vis11a.l system and 

its observer, we have a set of events t11a.t axe defined as ranges on the visual scene parameters 

that  causes state transitions bctwcen the autonlatoil states. For cxa~nple,  there might be two 

different evellts branching from a state in some screwing task observer auto~na~t~on and cat~sing 

state transitions to two other states, and a self loop caused by the continuous dyna.mics withilr 

a coa.rse quantization of a, DEDS state, as follows : 



In addition t o  other limits on the other scene pa.ramctcrs. That  is, if 52,. occurs within a. 

specific range, then the corresponding state tra.nsition should be asserted a.ccortling to the 

above set of event description. 

The problem then reduces to  computing the correspo~iding areas under the refined distri- 

bution curves obtained from the hierarchy levels. In the casc of the presence of more than 

a, single pa.ra.meter in the traasibion event description, thcll the corresponding area. under 

each parameter curve should be complltetl and multiplied for each pa,ra<meter in the event 

definition. The goal is to find the probability of the occurrence of each cvent. 111 the above 

example, the goal would bc to  find thc probability of e l ,  ez and ea. 

An obviolls way of llsing tliosc probability values is to establish some threshold values arid 

assert transitions according to those thresholds. For example, if for any event in the set 

(el,ez and e3), the computed probability of the range is > 0.85, then the corresponding 

state transition should be asserted. I t  should be noted t11a.t those tllrcsliold values are 

highly task and state-dependent, appropriate values for the thresholds can be determined 

by performing many experiments for dinerent task descriptions. T11c tliresl~olds can also be 

updated adaptively according to the current manipulation patterns under observation. Many 

problems may a.rise after ha.ving obta.ined the above proba.bilities a t  the current autorna.ton 

stake. It might be the case t11a.t none of the obtained probability values exceeds tlie set 

threshold value and/or ail values a.re very low. In t11a.t case, there is a good chance that  we 

are a t  either the wrong automata state, or t1ia.t a. gross error has occurred in ma.nipula.tion 

or some systerri failure. 

The remedy to  such problems can be implemented through time proximity, that  is, wait for a 

while (which is to  be preset) till a strong probability val~ic is rcgistercd and/or ~*ebrrcb in the 

automaton model for the observer till a high enough probability value is asserted, a fail state 

is reached or tlie initial ambiguity is assertcd. The rebacking strategy can be implemented 

using a stack-like structure associaterl with each stat,e t,l~at 11a.s already been travcrscd. A 



stack of the latest computed probability values sorted in descending order a.s an index to  the 

corresponding event. As soon as a forward tra,versal is performed, tlie top value should be 

popped. Rebacking can be done by using the top of tlie stack value and do the correspo~idiilg 

transition and compute the new probabilities for tlie events. For states that  have not been 

visited a t  all, new stacks and computations sl~onld be be performed. 

Having established techniques for navigating t,he observer, tlie model description is now 

completed. The formulation uses uncertainties to assert current states of the manipulation 

system and attempts to recover from mistakes a,nd errors. The model uses different inter- 

mediate levels for computing uncertainties, from the sensor level to the observer ai~tomatoli 

level. Next, we discuss some results and discuss our approa.ch. Then, we suggest ideas for 

extensions and future research. 

11 Results 

A substantia.1 portion of the proposed system is already implemented and tested. Experi~nents 

were performed to observe tlie robot liand. The Lord experimental gripper is used as the 

manipulating hand. Different views of the gripper are shown in Figures 24.a to 24.c. Feature 

tracking is performed for some dots on tllc gripper in real time, using the Maxvideo system. 

Approximate algorithms to allow 1inea.rizing the optical systeili are used a7 described in 

section 8.2. A static look-and-move strategy was then used for tracking the liand features. 

Tlie visual tracking system works in real time and a position control vector is supplied to  

the observer manipula.tor. 

The 2-D uncertainty levels were tested. Edge detection with uncertainty is performed using 

different noise levels as shown i n  scctioil 6, tlie enclosing "envelopes" were determined for tlie 

mechanical system and plotted in 3-D in scctioli 7, the rejection algorithms are completed. 

A grasping task using the Lord gripper, as seen by tlie observer, is shown in Figure 25.a to 

25.d. The sequence is defined by our model, and the visual states correspond to the gripper 

movement as i t  approaches a n  object an then grasps it. 

The image flow algorithm described in section 4.1 is tested on the image of the gripper. Tlie 

2-D flow vectors resulting from the detection algoritjlim when applied to diagona.1 moveinents 

of the gripper's image are shown in Figures 26.a a ~ i d  26.b. The motion was upwa.rds to the 



left and downwards to the right. It can be seen tha,t the resulting optic flow vectors arc 

consistent with the actual motion. The ima.ge gaussian pyramid of the gripper is shown in 

Figure 27, the pyramid is formed by successive applications of gaussian low-pass filtering 

and decimation by half, five levels of the pyra.tnid are shown. Sirnple segmentation and edge 

tracing are shown in Figure 28 and 29, as a.pplied to the ha.nd. Thns, event identification for 

the motion of the ha.nd is computed. Tra.cking mechanisms are demonstra.ted and shown to 

work in real-time to follow the hand, uncertainty levels are also developed. 

12  Discussion 

We have proposed a new a.pproach to solving the problem of observing a ~noving agent. In 

particular, we described a system for observillg a ma.nipa1atio11 process. Our a.pproach uses 

the formulation of discrete event dyna.mic systems n 5  a high-level model for the fra.~nework 

of evolution of the hand/object relationship over time. The proposed systcrn utilizes the a- 

priori knowledge asbout the domain of the ma.nipula.tion a.cl.ions in orcler to a.chieve efficiency 

and pra.ctica.li ty. 

We started by describing the automaton 111odcl of a discrete event dynamic system then 

proceeded to  formulate frameworks for the manipulation processes, and the observer con- 

struction. We developed efficient low-level event-identification mechanisms for determining 

different manipulation movements in the system and for moving t,he observer. Next, we 

defined and constrlicted six different levels for converti~lg thc raw 2-D image data  into mean- 

ingful 3-D descriptiolls of the world events. The formulation inclucles computing uncertainty 

models rcsalting from errors in the 2-D ant1 3-D rccovcry mccha.nisms. The formulati011 al- 

lows the observer to navigate in rca.1 time with a st,ablc bchaviour through the auto~naton 

state space and thus assert world events efficiently. 

The approach used can be considered as a frame work for a variety of visual tasks, as i t  lends 

itself to be a practical and feasible solution that uses existing information in a rohust and 

modu1a.r fashion. The work exa~nines closely the possibilities for errors, mistakes and uncer- 

tainties in the manipulation system, observer co~~struct ion process and c v e ~ ~ t  identification 

mechanisms. Ambiguities are dlowed to develop and are resolved aftcr finite time, recov- 

ery mecl~anisms are devised too. Theoretical and experimental aspects of the work supports 



adopting the framework as a new kind of basis for performing ma,ny task-oriented recognition, 

inspection and observation of visual phenomenons. In the next section we examine extension 

ideas and future research opportunities for which the formulation can be considered as the 

backbone. 

13 Extensions and Future Research 

The proposed formulation can be extended to  a.ccommodate for more manipulation processes. 

Increasing the number of states and expanding the events set would allow for a variety of 

manipulating actions. The system can be ma.de more "modu1a.r" by constructing a general 

automaton model of a discrete event dyna.mic syste~n and defining the stakes, events and 

the certainty thresholds for them in an automatic way through a learning sta,ge. In other 

words, different ma,nipulation actions can be performed and "sl~own" to the observer and 

then the possible states, events and sequences of operations are automatically embedded in 

the general dynamic model. Thus, the manual formulation of the DEDS model for the task 

would not be needed anymore. 

More powerful models for the DEDS could be sought, for example, context sensitive gram- 

mars, pushdown automata, turing ~nacliines and/or p-recursive functions. The rnodcl build- 

ing process can be thought of as forming a, compiler with the object, sensor, task description 

and learning modcl as inputs, and the algorit,l~~n to follow the observer automaton wit,h un- 

certainty as the output. Feedback can be supplied to the manipulating system in order to  

correct its actions, thus closing the vision-manipulation loop. The system could be gener- 

alized to an arbitrary number of mobile manipulating robots and mobile observing ones, a 

scheme would have to  be devised to  allow for distributed and parallel control of thc obser- 

vation and feedback process in an  eflicient way and to prevent deadlock and/or starvation 

proble~ns. 

The characteristics of the workspaces of both the maniprrlating robot and the observer can 

be utilized in order to avoid problems like collision and occlusion. This might be necessary 

to  explore if both workspaces intersect in a 3-D volume. This can occur in a simple lab- 

oratory setup with two fixed manipulators, visualizing the volume of intersection and the 

holes and voids [I] within each robot reachable workspace will be necessary for planning and 



constructing the model and its observer. 

Foveal and peripheral vision strategies can be applied to  "focus" on a specific aspect of the 

scene under considerations, according to  the present observer state. Pyramid approaches for 

locating actions can be used. Logarithmic sensors, like cameras whose CCD array resembles 

the human eye can be utilized a,s the observer's visual sensor for sliifting attention to  the 

interesting parts of the ima,ge. 

Parallelizing the whole process by forming simultaneous observers can be explored. This 

will be necessary in case of multiple observing robots, manipula.ting robots and/or different 

kinds of sensors (tactile, range, vision ..etc) so as to  allow for modular and efficient planning, 

"seeing" and recovery mechanisms. Inter-parallelization of different algorithms should be 

explored too. Overcoming dela.ys in co~nmunica,tion links between diflcrent observers and 

between the vision, control and parallelization modules within the same observer module 

should be addressed, specially if the modules are pitysicalEy distant within the laboratory 

setup. Overcoming delays when feedback is supplied to the manipula.ting hand would be 

necessary. 

The idea of DEDS as skeletons for observation under uncertainty can be explored further 

to allow for various other visual tasks. We discussed observing manipulation as a subset of 

observing moving agents, however, si~nilar formulation can be described for other taslcs, like 

recognizing stationary objects with optimal observation costs, i.c, minimal motion events. 

Perturbation analysis [17,35] can be performed for the average task behaviour of frequent 

visual events within a specified manipulation domain. Disappearing objects and partially 

occluded objects can also he recognized opti~nally using the proposed sche~ne,  using t,irne 

proximity as another dimension for asserting the identity of different targets, that  is, allow 

recognition and/or tracking to be completed within a pre-specified, task-dependent time 

frame. 
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