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Abstract

We address the problem of observing a. moving agent. i particular, we propose
a system for observing a manipulation process, where a robot hand manipulates
an object. A discrete event dynamic system (DEDS) frame work is developed for
the hand/object interaction over time and a stabilizing observer is constructed.
Low-level modules are developed for recognizing the “cvents” that causcs state
transitions within the dynamic manipulalion system. The work examines closely
the possibilitics for errors, mistakes and uncertainties in the manipulation system,
obscrver construction process and cvent identification mechanisms. The system
utilizes different tracking techuiques in order to observe the task in an active,

adaplive and goal-dirccled manner.
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1 Introduction

The problem of observing a moving agent was addressed in the literature extensively. It
was discussed in the work addressing tracking of targets and, determination of the op-
tic flow [3,9,10,19,22 42], recovering 3-D motion parameters of different kinds of surfaces
[14,16,27,33,34,40,41], and also in the context of other problems [2,6,7,8,37]. In this work we
try to establish a framework for the general problem of observation, which may be applied
to different kinds of visual tasks. We establish “intelligent” high-level control mechanisms
for the observer in order to achieve an efficient approach to visually recognizing different

processes within a specific dynamic system.

We concentrate on the problem of observing a manipulation process in order to illustrate the
ideas and motive behind our framework. The process of observing a robot hand manipulating
an object is very crucial for many robotic and manufacturing tasks. It is important to know
in an automated manufacturing environment whether the robot hand is doing the correct
sequence of operations on an object (or more than one object). It might be a fact that the
workspace of the robotic manipulator cannot be accessed by humans, as in the case of some
space applications or some areas within a nuclear plant, for example. In that case, having
another robot “look” at the process is a very good option. Thus, the observation process
can be thought of as a stage in a closed-loop fully automated system where there are robots
who perform the required manipulation task and some other robots who observe them and
correct their actions when something goes wrong. Typical manipulation processes include
grasping, pushing, pulling, lifting, squeezing, screwing and unscrewing. Visual information
from the observing robots can be the only kind of feedback, or it can be supplemented by
other kinds, like tactile sensing. In this paper, we address the problem of observing a single
hand manipulating a single object and “knowing” what is the hand doing, no feedback will

be supplied to the manipulating robot to correct its actions.

To be able to observe how a hand manipulates an object, we must be able to identifly how
the hand moves and how the hand/object physical relationship evolves over time. An obvi-
ous way of doing this would be to identify the motion vectors as scen be the observer. In
other words, identify the two-dimensional vectors in the observer’s camera plane and use

these as a cue to know how the objects under consideration moves in the three-dimensional



space. The problems of recovering the image flow vectors (the two-dimensional motion vec-
tors in the camera plane), and identifying the scene structure and motijon have been key
problems in computer vision. Many techniques have been developed for estimating the im-
age flow [3,9,15,19,22], and to recover the three-dimensional world structure and motion
[14,33,34,36,39,40,41]. Those techniques are not problem-oriented, they are not restricted to

a particular problem domain, as is the case with our observer construction problem.

Trying to use the above techniques directly to solve our observer problem will not be efficient.
In fact, possibly not feasible to perform in a practical way using the current technology, as
the complexity of the manipulation process increases. Due to the fact that we probably
know a-priori some information about the allowable (or useful) manipulation processes and
the geometry of the robotic hand, posing the problem as a structure-from-motion vision
procedure is a very naive way of modeling the observer system. It should also be noted
that the observer will have to be an active one to be able to interact with the manipulation
environment in such a way as to be able to “see” at all times. The idea of an active observer
was discussed in the literature [2,6], and it was shown that an active observer can solve basic

vision problems in a much more efficient way than a passive one.

We use a discrete event dynamic system as a high-level structuring technique to model
the manipulation system. Our formulation uses the knowledge about the system and the
different actions in order to solve the observer problem in an efficient, stable and practical
way. The model incorporates different hand/object relationships and the possible errors in
the manipulation actions. It also uses different tracking mechanisms so that the observer
can keep track of the workspace of the manipulating robot. A frame work is developed for
the hand/object interaction over time and a stabilizing observer is constructed. Low-level
modules are developed for recognizing the “events” that causes state transitions within the
dynamic manipulation system. The process uses a coarse quantization of the manipulation

actions in order to attain an active, adaptive and goal-directed sensing mechanism.

The work examines closely the possibilities for errors, mistakes and uncertainties in the
manipulation system, observer construction process and event identification mechanisms. We
divide the problem into six major levels for developing uncertainty models in the observation
process. The sensor level models deals with the problems in mapping 3-D features to pixel

coordinates and the errors incurred in that process. We identify these uncertainties and



suggest a framework for modeling them. The next level is the eztraction strategy level,
in which we develop models for the possibility of errors in the low-level image processing
modules used for identifying features that are to be used in computing the 2-D evolution of
the scene under consideration and computing the image flow . In the third level, we utilize the
geometric and mechanical properties of the hand and/or object to reject unrealistic estimates

for 2-D movements that might have been obtained from the first two levels.

After having obtained 2-D models for the evolution of the hand /object relationship, we trans-
form the 2-D uncertainty models into 3-D uncertainty models for the structure and motion of
the entire scene. The fourth level uses the equations that govern the 2-D to 3-D relationship
to perform the conversion. The fifth level rejects the improbable 3-D uncertainty models for
motion and structure estimates by using the existing information about the geometric and
mechanical properties of the moving components in the scene. The sixth and highest level is
the DEDS formulation with uncertainties, in which state transitions and event identification

is asserted according to the 3-D models of uncertainty that were developed in the previous

levels.

We describe the automaton model of a discrete event dynamic system in the next section
and then proceed to formulate our framework for the manipulation process and the ob-
server construction. Then we develop efficient low-level event-identification mechanisms for
determining different manipulation movements in the system and for moving the observer.
Next, the uncertainty levels are described in details. Some results from testing the system is

enclosed and future extensions to the system are discussed.

2 Discrete Event Dynamic Systems

In this section we present an overview for the development of a theory for discrete event
dynamic systems (DEDS). Dynamic systems are usually modeled by finite state automata
with partially observable events together with a mechanism for enabling and disabling a
subset of state transitions [26,28,30,31]. We describe a recently developed framework for
analyzing and controlling discrete event dynamic systems [28]. We propose that this model
is a suitable framework for many vision and robotics tasks, in par.‘ticular, we use the model

as a high-level structuring technique for our system to observe a robot hand manipulating



an object. The approach used in this framework is a state space approach that focuses
on controllability issues for DEDS. We consider the issues of stability, observability and

stabilizability by output feedback within this framework.

2.1 What is a discrete event dynamic system ?

Discrete event dynamic systems (DEDS) are dynamic systems (typically asynchronous) in
which state transitions are triggered by the occurrence of discrete events in the system. Many
existing dynamic system have a DEDS structure, manufacturing systems and communication
systems are just two of them. The state space approach in representing and analyzing
such systems will probably lead to more applications that might be incorporated into the
framework of DEDS. It will be assumed in the development of the state space approach of
analyzing DEDS that some of the events in the system are controllable, i.e, can be enabled or
disabled. The goal of controlling DEDS is to “guide” the behaviour of the system in a way
that we consider “desirable”. It is further assumed that we are able to observe only a subsct
of the event, i.e, we can only see some of the events that are occurring in the system and not
all. In some cases we will be forced to make decisions regarding the state of the system and

how to control a DEDS based upon our observations only.

In the next subsection we will discuss the finite state model of a DEDS. This representation of
a DEDS will be used the following subsections. This model will be a simple non-deterministic
finite-space automaton. Graphical representations for DEDS automatons will be used as
examples to explain the different definitions and ideas to be presented. The notions of
stability for a DEDS will be introduced and discussed. We then focus on the questions of
observability and state reconstruction from intermittent observations of the event trajectory.

Further, we address the problem of stabilization by output feedback.

2.2 Modeling

The discrete event dynamic systems under consideration can always be modeled by a non-
deterministic finite-state automata with partially observable and controllable events. In
particular, one can make the distinction between classical automata theory [18,23,25,32] and
our representation of DEDS in terms of the state transitions. In clgssical automata the events

are inputs to the system, whereas in DEDS the events are assumed to be generated internally



by the system and the inputs to the system are the control signals that can enable or disable

some of these events. We can represent our DEDS as the following quadruple :
G=(X,5UT)

where X is the finite set of states, ¥ is the finite set of possible events, U is the set of
admissible control inputs consisting of a specified collection of subsets of ¥, corresponding
to the choices of sets of controllable events that can be enabled and I' C ¥ is the set of

observable events. Some functions can also be defined on our DEDS as follows :
o d: X - 2%
o e: X - 2%
o [:XxET 2%

where d is a set-valued function that specifies the set of possible events defined at each state,

e is a set-valued function that specifies the set of events that cannot be disabled at each state,

and f is the set-valued function that specifies state transitions from a state under different
events. An output process can be formalized simply : whenever an event in I’ happens we

see it, otherwise we don’t see anything.

Figure 1 : A Simple DEDS Example

We can visualize the concept of DEDS by an example as in Figure 1, the graphical represen-
tation is quite similar to a classical finite automaton. Here, circles denote states, and events
are represented by arcs. The first symbol in each arc label denotes the event, while the sym-

bol following “/” denotes the corresponding output (if the event is observable). Finally, we



mark the controllable events by “:u”. Thus, in this example, X = {0,1,2,3}, ¥ = {«, 3,6},
I' = {«, 6}, and é is controllable at state 3 but not at state 1.

Also d(1) = e(1) = {a, 8}, d(3) = {6}, e(3) = ¢, /(0,8) = {0,3} etc. A transition, = - y,

consists of a source state, z € X, an event, o € d(z), and a destination state, y € f(z,0).

In general, a DEDS automaton A is a nondeterministic finite state automaton, however, if
f(z,0) is single valued for each z € X then A can be termed as a deterministic finite state

automaton. A finite string of states, x = zgz;...z; is termed a path or a state trajectory from

2o if x4 € f(=i, d(2;)) for all i = 0...j — 1. Similarly, a finite string of events s = 0103...0;

is termed an event trajectory from z € X if 0y € d(z) and 0,41 € d(f(z,010;...0%)) for all 1,

where we extend f to X* via

f(z,0107...0;) = f(f(z,0104...0,_1),0;)
with f(z,€) = z. In our graphical example (Figure 1), a33¢ is an event trajectory.
If we denote a transition labeled by ¢ by —7, then we can similarly let —* denote a string

of transitions s and —* denote any number of transitions, including no transitions. We can

define the range of a state z by
R(A,z) ={y € X|z =~ y}

indicating the set of states that can reached from z, we can also define the range of a subset

of states ¢ in X by

R(A’Q) = U.rGQ R(Aa:l')

An algorithm for computing R(A, Xp) for any Xo C X that runs in O(n) where n = | X| can

be easily formalized as follows :

Let g = Q¢ = Xo and iterate
Reyr = R U f(Qk, B)
Qi1 = Ryy1 N Ry
Terminate when Ryyy = Ri. Then, R(A, Xo) = Rk.
A state 2 € X is alive if d(y) # ¢ for ally € R(A,z). A subset Y of X is termed a live set if

all z € Y are alive. A system A is termed alive il X is a live sel.



2.3 Stability

In this section we discuss the notions of stability and the possibility of stabilizing a discrete
event dynamic system. In particular, we are going to concentrate on stability notions with
respect to the stales of a DEDS automaton. Assuming that we have identified the set of
“good” states, I, that we would like our DEDS to “stay within” or do not stay outside for

an infinite time, the problem would reduce to :

e Checking out whether all trajectories from the other states will visit F infinitely often.

o Trying to “guide” the system using the controllable events in a way such that the

system will visit the “good” states infinitely often.

We shall start by defining and testing for different notions of stability and then discuss ways
to stabilize a system. We shall start by assuming that the DEDS model under consideration is
an uncontrolled system with perfect knowledge of the state and event trajectories (xnT = $),

to simplify developing the definitions and examples.

2.3.1 Pre-Stability

To capture the idea of stability , we can suppose that we have already identified a subset of
states F/ in X that returning to £ implies being in a position to continue desired behaviour
from that point on. We can define the notion of a state in the DEDS being stable with
respect to IV in two stages. The first stage will be the weaker notion and will be termed
pre-stability. We say that ¢ € X is pre-stable if all paths from z can go to E in a finite

number of transitions, i.e, no path from & ends up in a cycle that does not go through E.

NN Sssssssssssssssasw~~"

Figure 2 : Stability Example
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In Figure 2, states 0, 2, 3, and 4 are pre-stable, since all transitions from them can goto {0,
3} in a finite number of transitions. State 1 is not pre-stable since it will stay forever outside

E if an infinitely long string of §’s occurs. A definition of pre-stability can be formalized as

follows :

Given a live system A and some F C X, a state z € X is pre-stable with respect to I (or
E-pre-stable) if for all x € X' (A, ) such that |x|> n, there exists y € x such that y € E. We
say that a set of states is F-pre-stable if all its elements are E-pre-stable and a system A is

pre-stable if X is E-pre-stable.

The restriction for liveness can be {lexible in the sense that if all the dead states are within
FE, then an automaton might still be E-pre-stable. It follows from the above definition that
astate z € X is E-pre-stable ifl z € F or f(z,d(x))is E-pre-stable. The following algorithm

computes the maximal E-pre-stable set X, within a system :

Let X¢ = F and iterate :
Xit1 = {z|f(z,d(z)) C Xi} UXk

Terminate when X4y = X, then X, = X}.

In Figure 2, it can be noticed that Xy = Xy = X,, = {0, 2, 3, 4}.

2.3.2  Stability

The stronger notion of stability corresponds to returning to the set of “good” states I in a
finite number of transitions following any excursion outside of I. Thus, given I, we define
a state 2 € X to be L-stable if all paths go through F in a finite number of transitions and
then visit I/ infinitely often. As an example, in Figure 2, where ¥ = {0, 3}, only 2 and 3 are
stable states. State 1 is not stable since the system can loop at 1 infinitely. State 0 although
in F is not stable since the system can make a transition to 1 and then stays there forever,
the same applies to state 4. We can use the previously defined notion of pre-stability and
define a state to be E-stable il all the states in its reach are I-pre-stable. In Figure 2, 0 and

4 are not I-stable since they can reach 1, which is not E-pre-stable. We can define stability

as follows :

Given a live A and z € X, x is E-stable iff R(A,2) is E-pre-stable. A Q C X is stable if all

z € @ are stable. A system A is stable if X is a stable set, from which we can conjecture



that A is E-stable iff it is also E-pre-stable.

2.3.3 Pre-Stabilizability

Now, we introduce control and reconsider the stability notions discussed before. We try
to “guide” our system or some states of it to behave in a way that we consider desirable.
Pre-stabilizability is described as finding a state feedback such that the closed loop system

is pre-stable. We can then define pre-stabilizability formally as follows :

Given a live system A and some F C X, 2 € X is pre-stabilizable with respect to F ( or

E-pre-stabilizable ) if there exists a state feedback K such that z is alive and E-pre-stable in

Agk. A set of states, @, is a pre-stabilizable set if there exists a feedback law K(s) ( A control

pattern ) so that every = € @ is alive and pre-stable in Ay, and A is a pre-stabilizable system

if X is a pre-stabilizable set.

As an example, in Figure 3, state 1 is pre-stabilizable since disabling v pre-stabilizes 1.
However, disabling v at state 2 leaves no other defined events at 2 and “kills” it, so neither

state 2 or 3 is pre-stabilizable.

:u

Figure 3 : Pre-Stabilizability Example
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2.3.4 Stabilizability

Stabilizability is an extension of pre-stabilizability. Stabilizability is described as finding a
state feedback such that the closed loop system is stable. We can then define stabilizability

formally as follows :

Given a live system A and some £ C X, z € X is stabilizable with respect to £ ( or E-
stabilizable ) if there exists a state feedback K such that z is alive and E-stable in Ax. A
set of states, @, is a stabilizable set if there exists a feedback law K (s) (a control pattern) so

that every z € @ is alive and stable in Ay, and A is a stabilizable system if X is a stabilizable

set.

Figure 4 : Stabilizability Example

In Figure 4, disabling 3 at state 2 is suflicient to make the whole system stable with respect
to state 0. Disabling v at state 1 will help stabilize only state 1, because the system can
then continue looping between states 2 and 3. Disabling 3 at state 3 will not help stabilize

or pre-stabilize any state.

2.4 Observability

In this section we address the problem of determining the current state of the system. In
particular, we are interested in observing a certain sequence of observable events and making
a decision regarding the state that the DEDS automaton A might possible be in. In our
definition of observability, we visualize an intermittent observalion model, no direct mea-
surements of the state are made, the events we observe are only those that are in I' C X, we

will not observe events in ZNT and will not even know that any of which has occurred. State



ambiguities are allowed to develop ( which must happen if ¥ # I' ) but they are required to
be resolvable after a bounded interval of events. This notion of observability can be illustrated

graphically as in Figure 5.

*' é *' B Output String

Perfect state knowledge

Figure 5 : Notion of Observability

2.4.1 Requirements

In developing the theory and examples we shall concentrate on uncontrolled models of DEDS
automatons with partial knowledge of the event trajectory. Due to the fact that we are
“seeing” only observable events in T' in our system, it is not desirable to have our automaton
generate arbitrarily long sequences of unobservable events in © N T. A necessary condition
to guarantee this is that the automaton after removing the observable events A|T', must not
be alive. In fact, it is also essential that every trajectory in A|T is killed in finite time by
being forced into a dead state. It can be seen that the condition for a DEDS automaton to
be unable to generate arbitrarily long sequences of unobservable events, is that A|T must

be D-stable, where D is the set of states that only have observable events defined (i.e,

D = {z € X|d(z)nT}).

2.4.2 State Observability

As illustrated in Figure 5, a DEDS is termed observable if we can use the observation sequence
to determine the current state exactly at intermittent points in time separated by a bounded
number of events. More formally, taking any sufliciently long string, s, that can be generated
from any initial state &. For any observable system, we can then find a prefix p of s such
that p takes z to a unique state y and the length of the remaining suffix is bounded by some

integer n,. Also, for any other string ¢, {from some initial state ¢, such that t has the same

14



output string as p, we require that ¢ takes £ to the same, unique state y.

6/¢

Figure 6.1 : A Simple System

Figure 6.2 : Observer for the System in Figure 6.1

In Figures 6.1 and 6.2 a simple system and its observer are illustrated. It can be seen that
the observer will never know when will the system be in states 3, 4 or 5, since the events
that takes the system to those states are unobservable ( é /¢ means that § € ¥ NT ), namely
6 and 7. There are two states in the observer which are ambiguous, however, another two

states are singleton states, i.e, when our observer reaches them, we’ll know the exact state



that the DEDS in currently in. Had it been the case that our observer could, for example,
loop forever in ambiguous states, then the DEDS would be unobservable. This leads to the

following formal definition of observability that ties it with the notion of stability :

A DEDS automaton A is observable iff F is nonempty and O is E-stable.
where O is the observer for A and E is the set of singleton states of O. It can be scen that

the observer in Figure 6.2 is stable with respect to the nonempty subset of states {0, 2} and

thus the DEDS of Figure 6.1 is observable.

2.5 Output Feedback Stabilizability

In this section we combine the ideas discussed in the previous two subsections regarding
observability and stability to address the problem of stabilization by dynamic output feedback
under partial observations. In this section we concentrate on partially controlled systems with
partial knowledge of the event trajectory. In particular, our goal is to develop stabilizing
compensators by cascading and a stabilizing state feedback defined on the observer’s state

space.

2.5.1 Requirements

To attack the problem of output feedback stabilization, it should be noticed that we are
actually trying to “manipulate” the system’s observer, in other words, what we have available
in a sequence of observable events (the system’s output) and we are trying to use this output
to control the behaviour of the system using only the events that we can control. It is then
possible to redefine the problem of output feedback stabilization as the stabilization of the

observer by state feedback.

The obvious notion of output E-stabilizability (stabilizability with respect to £ C X) is the
existence of a compensator C so that the closed-loop system Ag is E-stable. It is possible
that such a stabilizing compensator exists, such that we are sure that the system passes
through the subset F infinitely often (E-stable) but we never know when the system is in E.
A stronger notion of output feedback stabilizability would not only requires that the system
passes through subset E infinitely often, but also that we regularly know when the system is

in E. In out example and discussion we shall concentrate on this stronger notion of output



stabilizability.

Observer

Figure 7 : Example for Output Stabilizability

2.5.2 Strong Output Stabilizability

The basic idea behind strong output stabilizability is that we will know that the system is

in state F iff the observer state is a subset of £. The fact that the observer state should be

a subset of E instead of having the observer state of interest includes states in I is because
we want to guarantee that our system in within . Qur compensator should then force the

observer to a state corresponding to a subsct of I at intervals of at most a finite integer ¢



observable transitions. We can then formalize the notion of a strongly output stabilizable

system as follows :

A is strongly output E-stabilizable if there exists a state feedback K for the observer O such

that O is stable with respect to Egp = {2 € Z |2 C E }.

where Z is the set of states of the observer.

As an example, considering the DEDS and its observer in Figure 7, where IF = {1, 2}, we
have to check the observer stability (or stabilize the observer) with respect to Eg, because
this is the only observer state that is a subset of £. As a start, we do not know which state is
our system in (as denoted by the state {0, 1, 2, 3}), however, using the observer transitions
we can see that to achieve Eg-stability for the observer we only need to disable a at the
observer state {0, 2}. It should be noted that all the events are observable in this DEDS

automaton.

3 Modeling and Observer Construction

Manipulation actions can be modeled efficiently within a discrete event dynamic system
framework. It should be noted that we do not intend to discretize the workspace of the
manipulating robot hand or the movement of the hand, we are merely using the DEDS
model as a high level structuring technique to preserve and make use of the information we
know about the way in which each manipulation task should be performed, in addition to
the knowledge about the physical limitations of both the observer and manipulating robots.
We avoid the excessive use of decision structures and exhaustive searches when observing the

3-D world motion and structure.

A bare-bone approach to solving the observation problem would have been to try and visually
reconstruct the full 3-D motion parameters of the robot’s hand, which would have more than
six degrees of freedom, depending on the number of fingers and/or claws and how they
move. The object’s motion should also be recovered in 3-D, which is complicated especially
if it is a non-rigid body. That process should be done in real time while the task is being
performed. A simple way of tracking might be to try and keep a fixed gecometric relationship
between the observer camera and the hand over time. However, the above formulation is

inefficient, not needed and for all practical purposes infeasible to compute in real time. The



limitation of the observer reachability and the extensive computations required to perform the
visual processing are motives behind formulating the problem as a hierarchy of task-oriented
observation modules that exploits the higher-level knowledge about the existing system, in

order to achieve a feasible mechanism of keeping the visual process under supervision.

We do a coarse quantization of the visual manipulation actions which has both continuous
and discrete aspects of manipulation dynamics. State transitions within the manipulation
domain are asserted according to probabilistic models that determine at diflerent instances
of time whether the visual scene under inspection has changed its state within the discrete
event dynamic system state space. We next discuss building the manipulation model for two
simple tasks, grasping and screwing; then we proceed to develop the observer for these tasks.
Formulating the uncertainty models for the state transitions and the inter-state continuous
dynamics will be left for the sections that deal with the different uncertainty levels and event

identification mechanisms.

3.1 Building the Model

The ultimate goal of the observation mechanism is to be able to know at all (or most) of the
time what is the current manipulation process and what is the visual relationship between the
hand and the object. It should be noticed that this concept is very similar to the concept of
observability as defined in the previous section for general DEDS. The fact that the observer
will have to move in order to keep track of the manipulation process, makes one think of
the output feedback stabilizability principle for general DEDS as a model for the tracking

technique that has to be performed by the observer’s camera.

In real-world applications, many manipulation tasks are performed by robots, including, but
not limited to, lifting, pushing, pulling, grasping, squeezing, screwing and unscrewing of
machine parts. Modeling all the possible tasks and also the possible order in which they are
to performed is possible to do within a DEDS state model. The different hand/object visual
relationships for different tasks can be modeled as the set of states X. Movements of the hand
and object, either as 2-D or 3-D motion vectors, and the positions of the hand within the
image frame of the observer’s camera can be thought of as the events’ set I' that causes state
transitions within the manipulation process. Assuming, for the time being, that we have no

direct control over the manipulation process itself, we can define the set of admissible control



inputs U as the possible tracking actions that can be performed by the hand holding the
camera, which actually can alter the visual configuration of the manipulation process (with
respect to the observer’s camera). Further, we can define a set of “good” states, where the
visual configuration of the manipulation process enables the camera to keep track and to
know the movements in the system. Thus, it can be seen that the problem of observing the
robot reduces to the problem of forming an output stabilizing observer for the system under

consideration, which was discussed in details in the previous section.

It should be noted that a DEDS representation for a manipulation task is by no mecans
unique, in fact, the degree of efficiency depends on the person who builds the model for the
task, testing the optimality of a manipulation models is an issue that is to be addressed in
the future. Automating the process of building a model is another issue that will have to
be addressed later. As the observer identifies the current state of a manipulation task in a
non ambiguous manner, it can then start using a practical and efficient way to determine the
next state within a predefined set, and consequently perform necessary tracking actions to
stabilize the observation process with respect to the set of good states. That is, the current

state of the system tells the observer what to look for in the next step.

3.1.1 A Grasping Task

We present a simple model for a grasping task. The model is that of a gripper approaching
an object and grasping it. The task domain was chosen for simplifying the idea of building
a model for a manipulation task. It is obvious that more complicated models for grasping or

other tasks can be built. The example shown here is for illustration purposes.

As shown in Figure 8, the model represents a view of the hand sat state 1, with no object
in sight, at state 2, the object starts to appear, at state 3, the object is in the claws of the
gripper and at state 4, the claws of the gripper close on the object. The view as presented
in the figure is a frontal view with respect to the camera image plane, however, the hand
can assume any 3J-D orientation as so long as the claws of the gripper are within sight of the
observer, for example, in the case of grasping an object resting on a tilted planar surface.
This demonstrates the continuous dynamics aspects of the system. In other words, different
orientations for the approaching hand are allowable and observable. State changes occur

only when the object appear in sight or when the hand encloses it. The frontal upright view



is used to facilitate drawing the automaton only.
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Figure 8 : A Modecl for a Grasping Task

It should be noted that these states can be considered as the set of good states £, since these
states are the expected diflerent visual configurations of a hand and object within a grasping
task. States 5 and 6 represent instability in the system as they describe the situation where
the hand is not centered with respect to the camera imaging plane, in other words, the hand
and/or object are not in a good visual position with respect to the observer as they tend to
escape the camera view. These states are considered as “bad” states as the system will go
into a non-visual state unless we correct the viewing position. The set X = {1,2,3,4,5,6}

is the finite set of states, the set £ = {1,2,3,4} is the set of “good” states.

The events arc defined as motion vectors or motion vector probability distributions, as will



be described later, that causes state transitions and as the appearance of the object into the
viewed scene. The transition from state 1 to state 2 is caused by the appearance of the object.
The transition from state 2 to state 3 is caused by the event that the hand has enclosed the
object, while the transition from state 3 to state 4 is caused by the inward movement of the
gripper claws. The transition from the set {1,2} to the set {5,6} is caused by movement of
the hand as it escapes the camera view or by the increase in depth between the camera and
the viewed scene, that is, the hand moving far away {rom the camera. The self loops are
caused by either the stationarity of the scene with respect to the viewer or by the continuous
movement of the hand as it changes orientation but without tending to escape a good viewing
position of the observer. In the next section we discus different techniques to identify the
events. The controllable events denoted by “: t” are the tracking actions required by the
hand holding the camera to compensate for the observed motion. Tracking techniques will
later be addressed in detail. All the events in this automaton are observable and thus the
system can be represented by the triple G = (X, X, T), where X is the finite set of states, ¥ is
the finite set of possible events and 7' is the set of admissible tracking actions or controllable

events.

It should be mentioned that this model of a grasping task could be extended to allow for
error detection and recovery. Also search states could be added in order to “look” for the
hand if it is no where in sight. The purpose of constructing the system is to develop an
observer for the automaton which will enable us to determine the current state of the system
at intermittent points in time and further more, enable us to use the sequence of events
and control to “guide” the observer into the set of good stales I and thus stabilize the
observation process. Disabling the tracking events will obviously make the system neither
stable or pre-stable with respect to the set £ = {1,2,3,4}, however, it should be noted that
the subset {3,4} is already stable with respect to F regardless of the tracking actions, that
is, once the system is in state 3 or 4, it will remain in F (as defined by our formulation of the
model). The whole system is stabilizable w.r.t. E, enabling the tracking events will cause

all the paths from any state to go through F in a finite number of transitions and then will

visit £ infinitely often.
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3.1.2 A Screwing Task

The next model we present is one for a simple screwing task. The task is that of a gripper
screwing an object (a nail for example). It is assumed that the claws of the gripper already
encloses the nail and that contact is maintained throughout the process, the rotation is

allowed to be either clockwise or anticlockwise.
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Figure 9 : A Model for a Screwing Task

As shown in Figure 9, the model represents a frontal view of the hand at state 1, with the
object between the claws, the hand starts to rotate at state 2 and 3 with some view of the
claws and the object still in sight and the claws are occluded at state 4 which represents a side
view of the gripper. This specific visual representation was chosen because of the fact that
transitions between states 1 and 3 and the self loop at 3 cannot be compensated by a tracking
action due to the physical limitations of the tracking arm, in other words, the observing robot
might not be able to do 360 degrees rotations around the manip:‘ula.ting hand, cspecially if
the workspaces of both robots do not intersect and both are fixed, non-mobile robots. As
mentioned before, the frontal upright view with respect to the camera imaging plane in state
one was chosen only to facilitate drawing the automaton. The hand can assume any 3-D
orientation as so long as the claws in states 1, 2 and 3 are within sight of the observer, for

example, in the case of screwing a nail into a tilted wall.



As shown by our model, the automaton tends to keep the frontal view of the hand as long as
possible (as far as the observer robot can rotate), after that the observer will just have to sit
idle until rotation of the hand is trackable again. If one define the stable visual state as state
1, then obviously the system cannot be made stable with respect to that state, however, one
can think of a screwing action on the whole as a stable set, since the robot hand is always
within sight of the observer and it does not tend to escape the viewing field. In that case the
set of “good” states E is the same as the set X = {1,2,3,4}, the finite set of states. The
goal of the observer in that case would basically be trying to keep a frontal view as long as

it can.

The event e; can be defined as rotations that the observer robot can track and keep a frontal
position of the hand, while e; is the one that makes the observable robot reach its “limit”
position where it cannot rotate around the hand in the same direction any longer. The
rotations ez are the untrackable rotations, which lie beyond the reachable workspace of the
observable robot. The event ¢4 can be defined as the event that causes the visual scene to

be a side view of the gripper.

3.2 Developing the Observer

In order to know the current state of the manipulation process we neced to observe the
sequence of events occurring in the system and make decisions regarding the state of the
automaton, state ambiguities are allowed to occur, however, they are required to be resolvable
after a bounded interval of events. An observer, as defined in the previous section, have to be
constructed according to the visual system for which we developed a DEDS model. The goal
will be to make the system a strongly output stabilizable one and/or construct an observer
to satisfy specific task-oriented visual requirements that the user may specify depending on
the nature of the process. It should be noticed that events can be asserted with a specific
probability as will be described in the sections to come and thus state transitions can be made
according to pre-specified thresholds that compliments each state definition. In the case of
developing ambiguities in determining current and future states, the history of evolution of

past event probabilities can be used to navigate backwards in the observer automaton till a
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strong match is perceived, a fail state is reached or the initial ambiguity is asserted.

1 1,2,3,4,5,6]

Figure 10 : Qbserver for the Grasping System |

As an example, for the model of the grasping task, an observer can be formed for the system
as shown in Figure 10. It can be easily seen that the system can be made stable with respect
to the set Fo as defined in the previous section. At the start, the state of the system is
totally ambiguous, however, the observer can be “guided” to the set Eg consisting of all the
subsets of the good states £ as defined on the visual system model. It can be seen that by
enabling the tracking event from the state (5, 6) to the state (1, 2), all the system can be
made stable with respect to Ep and thus the system is strongly output stabilizable. The
singleton states represent the instances in time where the observer will be able to determine

without ambiguity the current state of the system.

In the next sections we shall elaborate on defining the different events in the visual manip-
ulation system and discuss different techniques for event and st;te identification. We shall
also introduce a framework for computing the uncertainty in determining the observable vi-
sual events in the system and a method by which the uncertainty distribution in the system

can be used to efficiently keep track of the different observer states and to navigate in the



observer automaton.

4 FEvent Identification

In this section we discuss different techniques for calculating the “events” that causes state
transitions within the model that we discussed in the previous section. We introduce the
concept of uncertainty in recovering the visual actions of the manipulation process and for-
mulate a way of using the uncertainty in the system in an eflicient recovery mechanism.
Using the formulation in the previous section, it can be shown, from the examples used in
modeling the manipulation process, that the events that causes state transitions are either
primitives like specific 3-D movements of the manipulating hand and/or events like “there
is an object now in view”, “the hand has enclosed the object” and so on. The events that
are supposed to be identified and recovered at different states of the observer automaton are
highly dependent on the current state in the obscrvation process. Thus the observer tends

to “look” at specific actions at dilferent instances of time.

We next discuss techniques to be used in identifying the 3-D motion of the manipulation
hand and/or the object, which are events that are always important to recover in order to
enable the observer to navigate in the automaton. The process is started by identifying the
manipulating hand and the object (if it exists) within the observer’s viewing window. We
then proceed to develop an algorithm for detecting the two-dimensional motion vectors of
the hand on the observer’s camera plane. Overall motion estimation and different tracking
strategies are then developed in order to be able to stabilize the observer in the most eflicient

way.

4.1 Image Motion of the Hand

In order to be able to identify how the manipulating hand is moving within a grasping task,
we use the image motion to estimate the hand movement. This task can be accomplished by
either feature tracking or by computing the full optic flow. Feature tracking seems to be a
good option for determining the hand motion, especially since the same hand will probably
be used throughout the manipulation process, and if the system is to be ported to another

manufacturing environment, then the interface that tracks specific features can be changed



while maintaining modularity. On the other hand, determining the full optic flow seems to
be essential for computing the object motion, as we might not know in advance any shape

or material information about the objects to be manipulated.

Many techniques were developed to estimate the optic flow (the 2-D image motion vectors)
(3,9,15,19,22,42], we propose an algorithm for calculating the image flow and then we discuss
a simpler version of the same algorithm for real time detection of the 2-D motion vectors. As
a start, we can use a simple two-dimensional segmentation scheme in order to identify the
hand and the manipulated object within the camera view. The input image is thresholded,
and all the “objects” within an image are identified. An object is simply characterized by
a fegion with a space of at least one pixel surrounding it from every where, thus regions
with holes can be easily recognized using this technique. An edge tracer can be used for this
purpose. We can assume that the largest object in the figure is the hand and the second
largest object is the manipulated object, or we can make our decision built on the knowledge
we have regarding the geometry of the hand and/or the object. As mentioned before, specific
features can be identified, for example, the corners, or have a piece of paper with specific

features stuck on the hand.
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Figure 11 : Identifying the SSD Optical Flow

The image flow detection technique we use is based on the sum-of-squared-differences optic
flow. We consider two images, 1 and 2 as shown in Figure 11. For every pixel (z,y) in

image 1 we consider a pixel area N surrounding it and search a neighboring area .S to seek
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a corresponding area in image 2 such that the sum of squared differences in the pixel gray
levels is minimal as {ollows :

SSD(£,9) = min

,y€S8

Y. [B(z+ Az,y+ Ay) - E(% + Az, § + Ay)]
Az, AyeN

The image flow vector of pixel (z,y) then points from the center of N in the first image to
the center of the best match in the second image. The scarch area S should be restricted
for practicality measures. In the case of multiple best matches, we can use the one which
implies minimum motion, as a heuristic favoring small movements. It should be noted that
the accuracy of direction and magnitude of the optic flow determination depends on the sizes

of the neighborhoods N and S.

There are three basic problems with this simple approach, one is that the sum of squared
differences will be near zero for all directions wherever the graylevel is relatively uniform, the
second is that it suffers from the so-called “aperture problem” even if there is a significant
graylevel variation. To illustrate this point, consider a vertical edge moving to the right by
one pixel distance, and suppose the N window size is 3 x 3 pixels and the S window size is
5 x 5 pixels, the squared-differences at an edge point reaches its maximum for three directions
as indicated by the vectors (in pixel displacements); (1,0), (1,—1) and (1,1). Figures 12.1
and 12.2 illustrates the aperture problem. The third problem is that the scheme will only

determine the displacement to pixel accuracy.

Figure 12.1 : The Aperture Problem Figure 12.2 : Normal Flow Estimation

The direction of motion of edge E cannot be
determined by viewing E through the aperture A



We solve the first problem by estimating the motion only at the hand or object pixels (as
determined by the two-dimensional segmentation scheme) where the intensity changes signif-
icantly. The Sobel edge detector is applied to the first image to estimate the edge magnitude
M(z,y) and direction D(z,y) for every pixel :

M(z,y) = /L% + E2

E;
D(z,y) ~ tan™! (Fy)

where I, and E, are the partial derivatives of the first image with respect to = and y,
respectively. The edge direction and magnitude is discretized depending on the size of the
windows N and S. The motion is then estimated at only the pixels where the gradient
magnitude exceeds the input threshold value. Motion ambiguity due to the aperture problem
can be solved by estimating only the normal flow vector. It is well known that the motion
along the direction of intensity gradient only can be recovered. Then we evaluate the SSD
functions at only those locations that lie on the gradient directions and choose the one
corresponding to the minimal SSD, if more than one minimal SSD exist we can choose the
one corresponding to the smallest movement, as described above. The full flow vector can
then be estimated by using the following equation which relates the normal flow vector ¥,

to the full flow vector #.

—

Uy = D.1

This method works under the assumption that the hand image motion is locally constant.
Solving the over-determined linear system will result in a solution for the full flow. The least
square error of the system can help us to decide whether the assumption is a reasonably
valid one for determining the event that caused the transition in the DEDS. On the other
hand, full flow determination can be performed for small clusters of points in the image and

a number of {ull flow estimates is then used for 3-D recovery.

To obtain sub-pixel accuracy, we can fit a one-dimensional curve along the direction of the
gradient for all the SSD values obtained. A polynomial of the degree of the number of points
used along the gradient can be used to obtain the best precision. However, for an S window
of size 7 X 7 pixels or less and an N window of size 3 X 3 or so, a quadratic function can

be used for efficiency and to avoid optimizational instabilities for higher order polynomials.



Subpixel accuracy using a quadratic function is shown in Figure 13. The subpixel optimum
can be obtained by finding the minimum of the function used and using the displacement at
which it occurred as the image flow estimate. To avoid probable discontinuities in the SSD

values, the image could be smoothed first using a gaussian with a small variance.
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Figure 13 : Subpixel Accuracy for Optical Flow

A simpler version of the above algorithm can be implemeunted in real-time using a multi-
resolution approach [42]. We can restrict the window size of N to 3 x 3 and that of §
to 5 x 5, and perform the algorithm on diflerent levels of the gaussian image pyramid. A
gaussian pyramid is constructed by the successive applications of gaussian low-pass filtering
and decimation by half. The pyramid processor, PVM-1 is capable of producing complete
gaussian pyramid from a 256 by 256 image in one video frame (3—10 of a second). Maxvideo
boards can be used for the simultaneous estimation of image flow at all the levels of the
pyramid for all the pixels. Image flow of 1 pixel at the second level would correspond to
2 pixels in the original image, 1 pixel displacement at the third level would correspond to
4 pixels in the original image, and so on. The level with the smallest least square fitting
error of the normal flow can be chosen to get the full flow and the motion vector is scaled
accordingly. This method is crude in the sense that it only allow image flow values of 1,2,4

or 8 pixel displacement at each pixel, but it can be used for detecting fast movements of the

hand.

By either using a flow recovery algorithm or a feature identification and tracking algorithm,



we end up having a set of values for 2-D displacements of a number of pixels. The problem is
how can we model the uncertainty in those 2-D estimates, which are to be used later for 3-D
parameter recovery. For example, if the estimate is - for a specific 3-D feature - that pixel
(zi,y;) has moved to pixel (2., ¥,), then the problem reduces to finding space probability
distributions for the four indices. The sensor acquisition procedure (grabbing images) and
uncertainty in image processing mechanisms for determining features are factors that should
be taken into consideration when we compute the uncertainty in the optic flow. In sections

5, 6 and 7 we discuss these problems in details.

4.2 Recovering 3-D events

One can model an arbitrary 3-D motion in terms of stationary-scene/moving-viewer as shown
in Figure 14. The optical flow at the image plane can be related to the 3-D world as indicated

by the following pair of equations for each point (z,y) in the image plane [27] :

Vyp = {mYZA — %—} + [xyﬂx — (1 + xz) Qy + yQZ]

‘/Z Vy 2
Vy = {y—Z—* 7 }+ [(l+y )Qx—fﬂyQY—fLQz]
where v, and v, are the image velocity at image location (z,¥), (Vx,Vy,Vz) and (Qx,Qy,Qz)
are the translational and rotational velocity vectors of the observer, and Z is the unknown

distance from the camera to the object.
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Figure 14 : 3-D Formulation for Stationary-Scene/Moving-Viewer
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In this system of equations, the only knowns are the 2-D vectors v, and vy, if we use the
formulation with uncertainty then basically the 2-D vectors are random variables with a
known probability distribution. In case that the real 3-D rclationships between feature
points (on the hand) are known, then recovering the absolute depth is a simple process, The

equations can then be be formalized, in case that that the 3-D features lie on a planar surface,

as follows :
vz = (1 — pz - gqy) (‘UZ - Z) + [xyﬂx - (1 + 2 ) Qy + sz]
VZ ‘/Y

Zy 2,

where Z, is the absolute depth, p and ¢ are the planar surface orientations. It should

vy = (1 - pz — qy) (y ) + [(1 + yz) Qx — zylly — zﬂz]

be noticed that the resulting system of equations is nonlinear, however, it has some linear
properties. The rotational part, for example, is totally linear. In section 8 we discuss different
methods for solving the system of equations and thus recovering the 3-D parameters in real

time with and without uncertainty formulation.

A part of the events definition, as mentioned before, is the recognition of the existence of
an object, for example. In other words, identifying objects in the visual scene and not
only recovering 3-D motion. Orientation of the object relative to the observer’s camera and
its shape can always be asserted by a simple 2-I) segmentation strategy as mentioned in
the discussion about computing the 2-D motion vectors. A data base of different shapes and
orientations for different sized objects with the associated state that they may be manipulated
in may be used and updated by the system. Correlation-based matching techniques can be
used to compare 2-D object representations, while moment computations are used to scale,
shift and re-orient the shapes to be correlated. New objects can still be recognized and stored

in this data base to facilitate future accesses.

4.3 The Controllable Events

The only kind of control inputs that can be supplied to the observer robot are the tracking
actions. Depending on the nature of the manipulation process,:the observer has to keep
track of the hand and object within the camera image plane in such a way so as to be able to
observe the process. The intelligent tracking control is supplied by the DEDS formulation.

Simple-minded tracking ideas, like keeping fixed 3-D relation between the camera and the



manipulating agent are not to be used in our system. The manipulation action might be a
simple one that does not require complex tracking, such as screwing and unscrewing, however,
more complex events, where the hand may occlude the manipulation process, or when the
hand starts moving away from the observer, might suggest the need for complex tracking
mechanisms, including translations and rotations of the observing robot hand on which the

camera is mounted.

A subset of the three-dimensional motion and structure parameters would have to be cal-
culated using two or more {rames [14,36,39,41]. The size of the subset will depend on the
ezpected kind of 3-D motion, as the current state of the DEDS system will specify. Our
system needs to track the object while using all the six degrees of freedom of the observer
robot in order to position the observer at the best feasible position at different states of the
automaton. Using rotations only to follow the end effector of the manipulating robot is not

sufficient for the stabilizing observer.

Two kinds of tracking mechanisms can be used, in the first kind, the two images on which
the motion estimation algorithms will be used, will be taken while the camera is stationary
and then the camera will move and the process will be repeated after the camera stops. The
observer movement will be a “jerky” one. Another scheme can be used where the camera can
grab images while the robot arm holding it is moving, in this case one should compensate
for the moving arm before calculating the image flow of the hand and/or object. Thus, the
problem reduces to finding the image flow due to the camera movement using the stationary-
scene/moving-viewer 3-D formulation. In the absence of translations, {or example, we can
compensate for the rotational part in a very fast and efficient way. Compensation will have
to be performed before using the structure and motion recovery algorithms. Velocity control

for moving the observer’s camera can be used to match the moving agent’s speed.

5 Sensor Uncertainties

In this section and the next two sections we develop and discuss modeling the uncertainties in
the recovered 2-D displacement vectors. As mentioned in the section describing techniques
for recovering the image flow, the uncertainty in the recovered values results from sensor

uncertainties and noise and from the image processing techniques used to extract and track



features. When dealing with measurements of any sort, it is always the case that the mea-
sutements are accompanied by some error. Mistakes also occur, where mistakes are not large
errors but failures of a system component or more. A description of errors, mistakes and

modeling them can be found in [4,5].
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Figure 15 : Image formation.

In this section we discuss errors in image formation. The observer robot uses a camera to

grab and register images of the manipulation system, so we need to know errors in mapping
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from the 3-D world features to the 2-D domain which we use in forming 3-D hypothesis about
the task under supervision. The accuracy, precision and modeling uncertainty of the camera
as our sensor is an important issue and the first step towards forming a full uncertainty model

for recovering the 3-D events in the observer automaton.

In Figure 15 (redrawn from [5]), a model of the image formation process is illustrated,
which lists some salient features of each component. As a lot of the image processing al-
gorithms compute derivatives of the intensity function, noise in the image will be amplified
and propagated throughout the observation process. The goal of this treatment is to find a
distribution for the uncertainty of mapping a specific 3-D feature into a specific pixel value.
In other words, if the feature 2-D position was discovered to be (%, 7), then the goal is to find
a 2-D distribution for ¢ and j, assuming that there is no uncertainty in the technique used
to extract the 2-D feature, the technique’s uncertainty will be discussed in the next section.
The end product of modeling the sensor uncertainty is to be able to say a statement like :
“The 3-D feature I is located in the 2-D pixel position (¢, ) with probability p; or located in
the 2-D pixel position (7, j + 1) with probability p; or .... given that the registered location is

(I,m), such that p; +ps+..... 4 p, = 1, and A error in the 2-D feature recovery mechanism.”

5.1 Image Formation Errors

The errors in the image formation process are basically of two different kinds. The first type
is a spatial error, the other type is a temporal error. The spatial error due to the noise
characteristics of a CCD transducer can be due to many reasons, among which are dark
signatures and illumination signatures. The technique to be used is to take a large number
of images, we can denote the image intensity function as a 3-D function I(u,v,t), with spatial
arguments v and v and temporal argument ¢. The sample mean of the image intensities over
N time samples can be denoted by I(u,v).

N

T(u,v) = 1 Zf(u,v,t)
N

t=1
The spatial variance in a 5 x 5 neighborhood of the means is computed by:

2 2

s*(u,v) = Z Z (T(w+ 1,0+ 7) — I(u,v))*

1=—2j=-2
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The dark signature of the camera can be determined by computing I(u,v) of each pixel with
the lens cap on. It will be found that a small number of pixels will have non-zero mean and
non-zero variance. The specific pixel locations are blemished and should be registered. The
uniform illumination is computed by placing a nylon diffuser over the lens and computing
the mean and variance. It will be noticed that due to digitizing the CCD array into a pixel
array of different size, and the difference in sample rates between the digitizer and camera,
the bbrder of the image will have different mean and variance from the interior of the image.
Some “stuck” pixels at the location of the blemished pixels will also be noted. The contrast

transfer function will also be noted to vary at different distances from the center of the lens.

Temporal noise characteristics can also be identified by taking a number of experiments and
notice the time dependency of the pixels intensity function. In our treatment and for our
modeling purposes we concentrate on the spatial distribution of noise and its effect on finding

the 2-D uncertainty in recovering a 3-D feature location in the pixel array.

5.2 Calibration and Modeling Uncertainties

Methods to compute the translation and rotation of the camera with respect to its coordi-
nates, as well as the camera parameters, such as the focal length, radial distortion coeffi-
cients, scale factor and the image origin, have been developed and discussed in the literature
[8,21,37]. In this section we use a static camera calibration technique to model the uncer-
tainty in 3-D to 2-D feature locations. In particular we use the sequence of steps used to
transform from 3-D world coordinates to computer pixel coordinates in order to recover the

pixel uncertainties, due to the sensor noise characteristics described previously.

As shown in Figure 16, the sequence of steps is used for a coplanar set of points in order
to obtain the rotation and translation matrices, in addition to the camera parameters. The
input to the system are two sets of coordinates, (X;,Y;), which are the computer 2-D pixel
image coordinates in frame memory and (Z, Yw, 2w ), Which are the 3-D world coordinates
of a set of coplanar points impressed on a piece of paper with known inter-point distances.
A discussion of the exact mathematical {ormulation of the inter-step computations to find

all the parameters can be found in [8].



(Zws Yuw, 2y) 3-D world coordinates

Step 1

Rigid body transformation from (2, 3w, 24) to (z,y, 2)

Parameters to be calibrated : R and T

|

(z,y, 2) 3-D camera coordinates

y

Step 2

Perspective projection with the pin hole gcometry

Parameters to be calibrated : f

(X4, Yy) Ideal undistorted image coordinates

Y

Step 3

Radial lens distortion

Parameters to be calibrated : Ky and K>

(X4, Yy) Distorted image coordinales

Y

Step 4

TV scanning, sampling and computer acquisition

Parameters to be calibrated : scale factor S, and (Cy,Cy)

Y

(X;,Yy) Computer image coordinates in frame memory.

Figure 16 : The Four-Steps Transformation from 3D World Coordinates

to Computer Image Coordinates
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Our approach is to treat the whole camera system as a black box and make input/output
measurements and develop a model of its parametric behaviour. The next step is to utilize
the recovered camera parameters and the number of 3-D points which we created in order
to formulate a distribution of the 2-D uncertainty. The points used in calibration and later
in recovering the distribution can be the actual features on the robot hand that are to be
tracked and thus providing a similar experimental environment to the one that the observer

will operate in.

The strategy used to find the 2-D uncertainty in the features 2-D representation is to utilize
the recovered camera parameters and the 3-D world coordinates (2, Yw, 2w) of the known set
of points and compute the corresponding pixel coordinates, for points distributed throughout
the image plane a number of times, find the actual {feature pixel coordinates and construct
2-D histograms for the displacements from the recovered coordinates for the experiments
performed. The number of the experiments giving a certain displacement error would be
the z axis of this histogram, while the z and y axis are the displacement error. Diflerent
histograms can be used for different 2-D pixel positions distributed throughout the image
plane. The three dimensional histogram functions are then normalized such that the volume
under the histogram is equal to 1 unit volume and the resulting normalized function is used
as the distribution of pixel displacement error, thus modeling the sensor uncertainty. The

black box approach is thus used to model errors in a statistical sense.

6 Image Processing Uncertainties

In this section we describe a technique by which developing uncertainties due to the image
processing strategy can be modeled. In addition, we end the discussion by combining both
the sensor uncertainties developed in the previous section and the models developed in this
section to generate distribution models for the uncertainty in estimating the 2-D motion
vectors. These models are to be used for determining the full uncertainty in recovering the

3-D events that causes state transitions between states of the observer automaton.

We start by identifying some basic measures and ideas that are used frequently to recognize
the behaviour of basic image processing algorithms and then proceed to describe the technique

we use in order to compute the error model in locating certain [eatures from their 2-D



representation in the pixel array. We concentrate on modeling the error incurred in extracting
edges, as edge extraction is a very popular mechanism that is used for both identifying feature
points on the manipulating hand and also for computing 2-D contours of the object under
supervision. When we discussed flow recovery techniques before, it was discussed in details
that the optic flow recovery algorithm using local matching works well for the intensity

boundaries and not for the inside regions.

6.1 Edge Extraction Uncertainties

Edge extraction strategies and methods to evaluate their performance qualitatively and quan-
tatively have been presented and discussed in the literature [11,13,24,29]. There are many
types of edges, ideal, ramp and noisy cdges as shown in Figure 17 are only three of them.
Different curvatures in the edges also constitute another dimension to be taken into consid-

eration when it comes to asserting the types of edges that exist.

Noisy Edge Ramp Edge Ideal Edge
Figure 17

The goal of developing the error models for edge extraction to to be able to say a statement
like : “Given that the 2-D feature recovered using the edge recovery S is in pixel position
(z,y), then there is a probability that the feature was originally at pixel position (z+1, y) with
probability p; or .... etc. due to the noisc in the pixel image, such that py +p2+....+p, = 1.7

The problem is to find the probabilities.

It should be obvious that there may be different types of noises and also different levels of

those types that might vary at different locations in the sensor image plane. This adds to



the different models that we might have to construct. Our approach is to use ideal, that
is, synthesized edges of diflerent types, locations and also orientations in image {rames then
corrupt them with different kinds and levels of noises. We know the ideal edge points from
the ideal image, for which we shall use the edge detector that is to be used in the observer
experiment. The corrupted images will then be operated upon by the detector and the edge
points located. The edge points will differ from the idecal image edge points. The problem
reduces to finding corresponding edge points in corrupted and ideal images then finding the
error along a large number of edge points. A 2-D histogram is then constructed for the
number of points with specific displacement errors from the ideal point. The volume of
the histogram is then normalized to be equal to 1, the resulting 3-D function is the 2-D

probability density function of the error of displacements.

In Figure 18, an ideal box is drawn, then corrupted with an additive gaussian noise with o
equal to 3, 10, 20, 30 and 50 respectively and then the edges computed as shown. In the box
there are four different kinds of ideal edges (different orientations with the object inside or
outside of the background). The correspondence between edge p(;ints in the corrupted and
ideal is established by choosing the point with the minimal distance from the ideal edge point,
such that it does not correspond to another ideal edge point. The histogram is constructed
for each edge and then normalized. For practicality measures, the process can be repeated for
orientations differing by 15° and the set of distributions preserved. Whenever the observer
automaton deals with a specific edge while extracting features, the corresponding distribution

is referenced.

6.2 Computing 2-D Motion Uncertainty

In this section we describe how to combine sensor and strategy error models to compute
models for the recovered image flow values. To simplify the idea, let’s assume that we have
recovered a specific feature point (zy,y;) in an image grabbed at time instant ¢t and the
corresponding point {z2,y2) at time t+ 1. The problem is to figure out the distribution of v,.
As an example, to explain the procedure, let’s assume that {rom the 3-D sensor distribution

we have have computed the marginal density function of the x coordinate of x; in the point:

fx(z) = /R (@ p)dy



where R is all the possible y values within the sensor uncertainty model.
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Figure 18 : Edge Detection Results for Diflerent Noise Levels
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The same process is applied for the strategy distribution and another function is recovered.
To simplify things, lets assume that both distributions looks like the distribution in Figure 19,
that is, there is an equal probability equal to % that the x coordinate is the same, or shifted
one position to the left or the right. Combining both distributions in a filtering-through
process would produce the distribution shown in Figure 20, which is the error probability
density function of having the 3-D feature @ 2-D coordinate in the recovered image 2-D z

position. Further more, assume that z, distribution is the same.
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Figure 19 : Distribution of the z-coordinate
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Figure 20 : Combined Sensor and Strategy Distribution

The problem reduces to finding the distribution of the optic flow & component, using these
two combined distributions. As an example, if x; = 10 and 2 = 22, then all probability
statements can be easily computed, a set of some of these probability statement is shown :

P(v; = 8)=P((z1 = 12) A (z2 = 20))=3 X §=5;
P(vy = 9)=P(((z1 = 12) A (z2 = 21)) V ((z1 = 1) A (23 = 20)))=(3 x D)+ (E x })=g

81
P(vx = 10]z) = 10)="E g0l = 27

Il

1
9
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Consequently, all distributions and expected values can be computed {from the combination of
the sensor level and strategy level uncertainty formulation. Those flow models are then passed
to the higher levels for 3-D recovery. In the next section we discuss a method for refining the
measured 2-D motion vectors and we then proceed to formulate the 3-D modeling of events

as defined by the observer automaton.

7 Refining Image Motion

In this section we describe a method to refine the recovered 2-D motion vectors on the
image plane. Having obtained from the sensor and extraction strategy uncertainty levels
distribution estimates for the image flow of the different features, we now try to eliminate
the unrealistic ones. We concentrate on the flow estimates {or the motion of the manipulating
hand and develop a technique that is to be used during the observation process as a means
to reject faulty estimates. Faulty estimates can results {rom noise, errors or mistakes in
the sensor acquisition process, manipulation or visual problems like occlusion, modeling the

uncertainties in the previous two levels may still leave room for such anomalies.

We assume that the features to be tracked on the hand lie on a planar surface or that
segmenting the hand as a polyhedra object into planar surfaces is :‘simple, although the mod-
ification would be very simple to allow for arbitrary 3-D positions of the feature distribution.
Since we know a-priori some information about the mechanical capabilities and limitations
and geometric properties of the hand, also about the rate of visual sampling for the observer,

since we actually control that, we might be able to assert some limits on some of the visual

parameters in our system.

To illustrate the idea behind the approach, consider Figure 21, assume all the curves are 2-D
parabolic functions y = az? 4 bz + ¢, if the set of data points are as shown in the figure, then
a least square error fit will produce the function D). However, if we know some upper and
lower limits on the values of the coeflicients «, b and ¢ then we might be able to construct
an upper and lower function parabolas A and C as an enclosing envelope, outside which we

can reject all the data points. In that case, we can do a fit for the points that lic inside the



envelope and obtain a more realistic function as shown by the curve 3.

Figure 21 : Fitting Parabolic Curves

The situation for rejecting estimates for the image flow is not much different. We know

equations that govern the behaviour of the image flow as a function of the structure and 3-D

motion parameters, as follows :

( Vy Vx

Ve B s - (14 )+ 00

Z

! Vy
vy = (1 - pr — qy) ¥y -

Which are second degree functions in z and y in three dimensions, v, = fi(z,y) and v, =

fz(l‘, y)'

) £ (14 97) 0x - ey — 20]

In addition, we know upper and lower limits on the coeflicients p, ¢, Vx, Vy, Vz, Qx, Qy,
1z and Z,, as we know that the mechanical abilities of the robot arm holding the hand will
make the relative velocity and distance between the camera impossible to exceed specific
values within visual sampling timing period. So the problem reduces to constructing the
three dimensional envelopes for v, and v, as the worst case estimates for the flow velocity
and rejecting any measured values that lie outside that envelope. Figure 22a indicates the

maximal v, that can ever be registered on the CCD array of the camera, the z and y are in



millimeters and the # — y plane represents the CCD image plane, the depth Z is the maximal
v, in millimeters on the CCD array that can ever be registered. Figure 22b indicates the

minimal v, it can be noticed that they are symmetric due to the symmetry in the limits of

the coefficients.

0.5 0.2

Figure 22.a : Maximal v, Figure 22.b : Minimal vy

0.2

Figure 22.c : Maximal Flow Magnitude Figure 22.d : Minimal Flow Magnitude



As an example, we write the equation governing the maximum v, value in the first quadrant

of the z — y plane (z%,y").

fVx ) (VZ, maz(pVx,, psVx )) ( maz(qVx,, q¢sVx,) )
— _—.s_ _ et s S Q
vxmuz ( Zo, fQYa + Zo, + Zos T + Zo, + Z Y
" (Qx, B min(fIIVZ,aquZ,)> vy — (n]’in(IJIVZ511)SVZ[) + QY,) 22
f fZ,, fZo, f

where the subscripts s and ! denote lower and upper limits, respectively. At first sight
the problem of determining the maximum value of v, seems to be a constrained non linear
optimization problem, which is true, however, assuming that the upper and lower limits of
the coefficients are equal in magnitude and opposite in directions (except for Z,, which is
used only as Zj;) makes the input to the maz and min functions in the above equations
always equal and thus providing one more degree of freedom in choosing the parameters and
making the choice consistent throughout the equation. Thus the problem becomes simply to
write eight equations as the above one for each of v, and vy, to draw the function in each of
the four quadrants for maximum and minimum envelopes. We shall not rewrite the sixteen
equations here, but we show the results for v, in Figures 22a and 22b, Figures 22¢ and 22d
are the maximum and minimum magnitude m(z, y) for the the image flow at any given point,

where :

m(z,y) = /v2 + vg

It should be noted that the maximum absolute possible value of the image flow is minimal

at the origin of the camera image plane and increases quadratically as the distance increases

from the center.

The above envelopes are then used to reject unrealistic 2-D velocity estimates at different
pixel coordinates in the image. As a further note, it should be mentioned that some on-
line elimination procedures can be implemented depending on the current positions in the
observer automaton, for example, the image flow field tends to assume certain configurations
in the image plane depending on the 3-D motion, independent of the object’s or the hand’s
structure, if the motion is only relative rotational velocities, the flow vectors all tend through
pass {from the same point. In other words, in addition to ofl-line a-priori estimation of
the envelopes and on-line testing of measurements, we can also develop custom rejection

techniques for certain observer automata states.



8 Recovering World Events

In this section we describe different techniques for recovering the 3-D events. In particular
we utilize the refined 2-D motion distributions that were computed in the previous levels in
order to achieve a robust estimation of the three dimensional motion and structure vectors
of the scene under observations. We develop some techniques for finding estimates of the
fequired parameters and discuss mathematical formulations that will enable us to determine

the 3-D event distributions.

We concentrate in our treatment of the subject on determining the manipulating hand pa-
rameters, as the hand configuration is well defined, we also continue using the assumption
that the feature points lie on a planar surface. As argued before, the extension to arbitrary
configurations is straight forward. The object behaviour can be asserted using similar tech-
niques and/or by observing conveniently located surface patches under similar assumptions.
We start by describing a deterministic method to recover 3-D parameters, then we describe
other approximate methods and we.conclude by discussing some mathematical formulations
for using the same techniques for recovering variable distributions of the world events at

different observer states.

The problem of recovering scene structure and the camera motion relative to the scene has
been one of the key problems in computer vision. Many techniques have been developed
for the estimation of structure and motion parameters ( Tsai and Huang [36], Weng et al.
[41] etc.). A lot of existing algorithms depend on evaluating the motion parameters between
two successive frames in a sequence. However, recent research on structure and motion has
been directed towards using a large number of frames to exploit the history of parametric

evolution for a more accurate estimation and noise reduction ( Ullman [39], Grzywacz and

Hildreth[14] etc.)

Next, we describe a method for recovering the 3-D motion and orientation of the planar
surface (on which lies the hand features) from an evolving image sequence. The algorithm
utilizes the image flow velocities in order to recover the 3-D parameters. First, we develop
an algorithm which iteratively improves the solution given two successive image frames. The
solution space is divided into three subspaces - the translational motion, the rotational motion

and the surface slope. The solution of each subspace is updated by using the current solution



of the other two subspaces. The updating process continues until the motion parameters

converge, or until no significant improvement is achieved.

Second, we further improve the solution progressively by using a large number of image
frames and the ordinary differential equations which describe the evolution of motion and
structure over time. Qur algorithm uses a weighted average of the expected parameters
and the calculated parameters using the 2-frame iterative algorithm as current solution and
continues in the same way till the end of the frame sequence. Thus it keeps track of the past

history of parametric evolution.

The solution is further improved by exploiting the temporal coherence of 3-D motion. We de-
velop the ordinary differential equations which describe the evolution of motion and structure
in terms of the current motion/structure and the measurements (the 2-D motion vectors)
in the image plane. As an initial step we assume that the 3-D motion is piecewise uniform
in time. The extended Kalman filter is then used to update the'solution of the differential

equations.

8.1 A 3-D Recovery Algorithm

One can model an arbitrary 3-D motion in terms of stationary-scene/moving-viewer as shown
previously in Figure 14. The optical flow at the image plane can be related to the 3-D world

as indicated by the following pair of equations (In case of a planar surface), for each point

(z,y) in the image plane :

vV, W
vy = (1-pz - qy) (3/3—— Z
(] [e]

where v; and v, are the image velocity at image location (2,y), (Vx, Vy,Vz) and (Qx,Qy,Q2)

) + [(144%) 2x — 29y — 297]

are the translational and rotational velocity vectors of the observer, p and ¢ are the planar
surface orientations. The situation becomes, {or each point, two equations in ecight unknowns,
namely, the scaled translational velocities Vy /Z,, Vy [/ Z, and V3 /Z,, the rotational velocities
Qx, Qy and Qz and the orientations p and ¢. Differential methods could be used to solve
those equations by differentiating the flow field and by using approximate methods to find

the flow field derivatives. The existing methods for computing the derivatives of the flow



field usually do not produce accurate results. Qur algorithm uses a discrete method instead,
i.e, the vectors at a number of points in the plane is determined and the problem reduces to

solving a system of nonlinear equations.

It should be noticed that the resulting system of cquations is nonlinear, however, it has some
linear properties. The rotational part, for example, is totally linear, also, for any combination
of two spaces among the rotational, translational and slope spaces, the system becomes linear.
For the system of equations to be consistent, we need the flow estimates for at least four

points, in which case there will be eight equations in eight unknowns.

8.1.1 Two-Frame Algorithm

The algorithm takes as input the estimate of the flow vectors at a number of points > 4
obtained from motion between two images. It iterates updating the solution of each subspace
by using the solution of the other two subspaces. Fach update involves solving a linear system,
thereby it requires to solve three linear systems to complete a single iteration. This process
continues until the solution converges, or until no significant improvement is made. The

algorithm proceeds as follows :

1. Set p, g = 0;
input the initial estimate for rotation ;
Solve the linear system for translation;
2. Use the translation and rotation from step 1 ;
Solve the linear system for the slope ;
3. Set i=1;
While (i < Max. Iterations) and (no convergence) Do
Solve for the rotations using latest estimates of translations, p and ¢;
Solve for the translations using latest estimates of rotations, p and ¢;

Solve for p, ¢ using latest estimates of translations and rotations;

end While ;
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8.1.2 Complexity Analysis

As we mentioned earlier, one should notice in the equations relating the flow velocities with
the slope, rotational and translational velocities that they are “quasi-linear” , if one can say
so. The equations exhibit some linear properties. This suggests that a purely iterative tech-
nique for solving non-linear e(iuations might not be an excellent choice, since, the variables
are linearly related in some way. To think of a way of “inverting” the relations might be
a good start, although to do that without a framework based on iterating and gravitating

towards a solution is not a good idea.

This makes one think of applying a method which converges faster than a purely iterative
scheme like Newton’s method. However, the complexity of Newton’s method is determined
by the complexity of computing the inverse Jacobian, which is of an order of N3, or N2:81
multiplications as the lower bound using Strassen’s technique. In our case, since we have
at least 8 equations in 8 unknowns, the complexity is of order 8 = 512 multiplications at
every iteration, and the method does not make any use of the fact that the set of equations

at hand exhibits some linear properties.

The algorithm proposed, on the other hand, makes very good use of the fact that there are
some linearity in the equations, by inverting the set of relations for each subspace at every
iteration. The complexity at every iteration is of the order of the complexity of computing
the pseudo-inverse which is of the order of { 343342 ) multiplications at each iteration,
where the first 3 comes from solving the system for the rotational variables, the second 3 is
for the translations, the last 2 is for p and ¢. This is equal to 62 multiplications at every
iteration, which is significantly less than the 512 multiplications in a method like Newton’s
for example. It was noticed that the algorithm converged to solution in a very small number

of iterations for most experiments we have conducted so far. The maximum number of

iterations was 6.

-~

Using the latest solution obtained from the two-frame analysis as the initial condition for
the next two-frame problem in the image sequence would further decrease the complexity,
as the next set of parameters would, most probably, be close in values to the current param-
eters, thus the number of iterations needed to converge to the new solution would decrease

significantly.
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8.1.3 Observations

e The algorithm is not sensitive to the initial condition of the orientation parameters.
The plane is simply assumed to be a frontal one at the beginning. The slope parameters

evolves with iterations.

e The algorithm is sensitive to input noise just like other existing algorithms, some ex-
periments shows the sensitivity with respect to the change of viewing angle. Similarly,
the algorithm performs better for a large number of points that are evenly distributed

throughout the planar surface, than it does for clustered, smaller number of image

points.

o It is proven that there exists dual solutions for such systems. However, if our method
gravitates towards a “fixed point” in the solution space we can find the other explicitly

in terms of the first one from the relations given by Waxman and Ullman {40).

8.1.4 Multi-Frame Algorithm

The ordinary differential equations that describe the evolution of motion and structure pa-
rameters are used to find the expression for the expected parameter change in terms of the
previous parameter estimates. The expected change and the old estimates are then used to

predict the current motion and structure parameters.

At time instant ¢, the planar surface equation is described by

Z=pX+qY + 2,

To compute the change in the structure parameters during the time interval dt, we differen-

tiate the above equation to get

dz dX dp dY dq dZ,
dt HRSFTIRET

—_— = p—

a - P FTRRAPT

The time derivatives of (X,Y, Z) in the above expression are given by the three components
of the vector —(V+ 2 x R) that represent the relative motion of the object with respect to the
camera. Substituting these components for the derivatives and the expression pX + qY + Z,

for Z we can get the exact differentials for the slopes and Z, as
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dZ, = Z,[(Qy + Vx)p — (x — Vi )g — V7] dt
dp = [p(Qyp — Qxq) + (2y + Nzq)] dt
dg = [g(Qyp — Qxq) — (2x + Qzp)]dt

Using the above relations, we can compute the new structure parameters at time ¢t + d{ as
p=pt+dp, ¢=q+dg and Z,= 27, +dZ,

Thus the slope parameters evolve at time t + di as follows :

Y4
/] Qyp—Qyx Q Q
Y4 _ p n Yyp Xq Z Y ¢ i
q q -z Qyp-Qxq —-Ox .

The new translational velocity V at time ¢ 4+ dt can be found in the absence ol accelerations

from
V=V4+VxQdt

Dividing 1 by Z, we get the new expected scaled translational velocity components at time

1 + di as follows :

VX VX —S Q Z Q Y ‘/ /\’
Wwil=|Ww]|+| -9 -s Qx Vy dt,
Vy Vy Qy —Qx -—s Vy

where s is expressed as follows :
s=(y +Vx)p-(Qx - W)qg-Vz
The expected rotational parameters at time { +dt remain equal to their values at time ¢ since
N=0+0x Q=0
and thus
(Q’)GQ,Y, Q’Z) = (Qx,,2z2)

Our first multi-frame algorithm uses a weighted average of the expected parameters at time

t + dt from the above equations and the calculated parameters using the two-frame iterative
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algorithm as the solution at time ¢ + dt, and continues in the same way until the end of the
frame sequence. Thus it keeps track of the past history of parametric evolution. We further
develop the first multi-frame algorithm to exploit the temporal coherence of 3-D motion.
We develop the ordinary differential equations which describe the evolution of motion and
structure in terms of the current motion/structure and the two-dimensional flow vectors in the
image plane. We assume that the 3-D motion is piecewise uniform in time, i.e, =V=o0.
We then use the equations expressing the time derivative of the slope derived above and
the fact that the derivative of the rotational velocities is zero and develop the following

expressions for the scaled translational velocities and the depth Z, :

dVy _ v/ o 1dZ, dVy _ 1/, 1 dZ dVy _ _1/, 1. dZ
@ = ~Vxgta @ = Wt and G = -V
1 dZ, ;
v —Vz — pvz — quy

The extended Kalman filter is then used to update the solution of the differential equations.
Where the state vector can be written as :

X=[Vx W Vz Qx Qy Qz p ¢ ]
and the measurement vector is expressed as :

= vz Svy vz bvy fur Suy
Z=1ve vy = T L S ]

The behaviour of the two-frame algorithm and the multi-frame algorithm can be conceptual-
ized as a control system as shown in Figures 23a and 23b.Parallel implementations could be
designed for the system, thus solving for the structure - motion parameters for each surface
separately. In fact, solving the linear system at each iteration could also be paralielized.

Extra processing is needed to segment the polyhedra-like hand into separate planar surfaces.

Image Sequence Structure / Motion Recovered Parameters
— Two - Frame -
Algorithm

Figure 23.a : Two - Frame Algorithm
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Figure 23.b: Multi - Frame Algorithm

8.2 Other Algorithms

There are other non-iterative techniques for recovering the 3-D parameters resulting from
2-D motion between two frames. The methods that will be mentioned here rely on specific
assumption regarding the hand’s geometry and/or world manipulating actions. Assuming
that the actual relations between feature points that lie on the hand plane is well defined
than a closed form solution for the structure parameters and depth can be estimated by
using a method like the one described by Fischler and Bolles [12]. The motion paramecters

can then be easily recovered by solving a linear system in six parameters.

It should be noticed that we try to use alternative methods in order to make the system of
equations “as linear as possible”, the motive behind that is the fact that linear systems can
be solved in a pseudo-real time framework for a relatively small number of feature points and
in addition a closed form solution always results. Another idea is to assume that the surface
of the manipulating hand is frontal at the time of capturing the frame to be processed with
the previous one, thus p and q are equal to zcro, and the problem reduces to solving a linear
system in six parameters for the motion parameters, while the depth is easily computed by

knowing the 3-D distance between any two feature points, thus Z, is equal to :

12
2
2
( L2 _ T ) + ( Y2 _ Y1 )2 + 1 _ - ;
f-pr2a—qy2  f-pz1—qunr f-pz2—qy2  [—-pr1—qu1 1—’4;1—“—?2 1—”—]L—‘7—j1

where f is the focal length of the lens, [ is the real 3-D distance between two feature points

on the hand and (z1,%1) and (22, y2) are the CCD coordinates of the two image points.

The assumption here being that the observer always locates itself to a position in which



the hand is frontal with respect to the camera image plane, and that manipulating move-
ments while the camera is moving and during computations is negiigible. Other formulations
may attempt to find pseudo-close form solution of the non-linear second order system and
other assumptions, like the absence of rotational and/or translational motion reduces the

complexity significantly.

8.3 Recovering 3-D Uncertainties

Having discussed methods for computing the three dimensional motion vectors and structure
parameters between two image frames, we now use the same formulations described earlier
for 3-D recovery but using 2-D error distributions as estimates for motion and/or feature
coordinates in order to compute 3-D uncertainty distributions for the real world motion

vectors and structure instead of single values for the woild events.

As an example to illustrate the idea, let’s assume that we have a linear system of equations

as follows :
T+ 3y =2

20+ y = 29

The solution of this system is very easily obtained as

o3, L
-—5/«2 541
2 1
Y=—21 ——2
) 51 52

That is, a linear combination of the right hand side parameters. If the parameters 2; and
29 were random variables of known probability distributions instead of constants, then the
problem becomes slightly harder, which is, to find the linear combination of those random
variables as another random variable. The obvious way of doing this would be to use convo-

lutions and the formula :
PX1+/\'2(:‘/) = ZPXLXz(:c’y - '7:)
R

for the sum of two random variables X;, X3 for any real number y and/or the formula for

linear combinations over the region R, which is for all z such that Py, x,(z,y — z) > 0.



Using the moment generating function or the characteristic function seems also to be a very
attractive alternative. The moment generating function M of a linear combination of random

variables, for example X7, X3 can be written as :

Mox, +5x,4c(t) = exp™ (Mx, (at)Mx,(bt))

for independent random variables X, X3. That is, the problem of solving linear systems on
the form Az = b, where b is a vector of random variables, may be reduced to finding closed
form solutions for z in terms of the random parameters (using any elimination technique) and
then manipulating the results and finding different expectations using moment generating or

characteristic functions.

The 2-D to 3-D conversion problem, as discussed in details earlier, is a non linear system on
the form F(z) = b where b is the vector of 2-D random variables obtained from the previous
levels. An approach to solving this system might be to try and approximate mathematically
the problem to finding the roots using an iterative technique which calculates the Jacobian
at every iteration and use Newton’s method iterative formula for an over-determined system

at the nth step as follows :

Xor = (1 I06)) T IO F(X)

where J is the Jacobian of the system, however the Jacobian and F will contain positional
and motion random variable nonlinear combinations at every iteration and we may have to

use the following formulae for product and quotient of random variables :

1 1
v = [ fxy (x—’) da
R |z T

fx(y) = '/R|-7J|fx,y(yn:,rv)dm

Obviously, such elaborate computations at every stage of descending towards a solution for
the non-linear combinations of random variables is very hard and expensive to compute in

pseudo-real time, if not impossible.

The solutions we suggest to this problem of finding the random variable solution for the

3-D parameters utilize the techniques we described in the previous two subsections. Using



either the two-frame iterative technique or the closed form algorithms, it should be noticed
that the problem reduces to either solving multi-linear systemsg or a single one. In that
case, using elimination and characteristic functions for computing the required expectations
and/or distributions is straight forward, as all the systems become linear or pseudo-linear.
In the iterative two-frame algorithm expectations can be used to avoid multiplication of
random variable estimates for the structure and translational parameters when solving for
the rotational random variable error parameters. Also, the same can be used for the positional

parameters on the CCD camera array.

Thus, we have suggested algorithms for the quick estimation of the 3-D uncertainties in
the structure and motion of the manipulation system. The next step would be to refine
these estimates and use them for asserting the world events with uncertainty modeling and

compensation. This will be described in the following two sections.

9 Refining World Events

In this section we describe techniques for eliminating and refining the 3-D models of ma-
nipulation under observation, whose recovery was discussed in the previous sections. In
particular, we discuss a strategy to reject improbable events that might have been computed
due to noise and uncertainties that were not compensated for in the distribution formulation,
also because of unsmooth visual artifacts. We employ both existing knowledge about the
mechanical properties of the manipulation and also knowledge from the current state of the

observer automaton.

We concentrate our treatment of the subject on the three dimensional behaviour of the hand
that is used in manipulation. The hand is assumed to be a well defined entity, and as we
mentioned before, changing the hand and/or its characteristics can be modeled by simply
plugging in a module that describes the new characteristics, the same hand is used through

out the entire manipulation activities.

Knowing the joint limits of the manipulating robot will enable us to reject improbable recov-
ered 3-D motion vectors, that could not have occurred in the real 3-D world. As an example,
assuming that we use a gripper with two “claws” having only one degree of freedom, then,

obviously, any recovered 3-D rotational velocities for the claws should be rejected. Unreal-



istic slope estimations should also be rejected, knowing the robotic reachability of the end

effector, with respect to the viewer.

The current position in the observer automata will allow refining the recovered 3-D event
distributions, as it might well be the case that impossible manipulation actions at a specific
manipulation stage are recovered. It is impossible, for example, due to the visual sampling
rate, that the hand is in and upright position holding a nail in the center of the image plane
at a time step, then having it disappear or hold another object at a dramatical distant 3-D
position in the next time step, unless, of course a manipulation or viewer system failure
has happened. In that case, some designated fail state should be accessed, discarding the
recovered parameters. Limits on Vy, Vy, Vz, Qx, Qy, Q7 and Z arc asserted for every

observer subset of states, and used for refining the recovered 3-D world events.

10 Navigating the Observer Automaton

At this point in the hierarchy of recovery and uncertainty levels, we have established methods
and algorithms for recovering the refined three dimensional velocity and structure of the
scene under observation. In addition, we computed the distribution of the uncertainty in the
numerical values of the parameters in real-time. TFor example, the computed value for the
translational velocity Vx might be a random variable lying between two values Vj and V;
with a known probability distribution F. The same applies for all the other parameters for

the different components in the scene.

The problem now is how to make use of these distribution values in order to be able to
navigate in the observer automaton as defined in section 2 and demonstrated by examples in
section 3. In other words, having built the DEDS automaton model of the visual system and
its observer, we have a set of events that are defined as ranges on the visual scene parameters
that causes state transitions between the automaton states. For example, there might be two
different events branching from a state in some screwing task observer automaton and causing
state transitions to two other states, and a sclf loop caused by the continuous dynamics within
a coarse quantization of a DEDS state, as {ollows :

e <y <2

51 52




e2:—(11 <Ny <1

Sl Sl

e3:— (I <Ny <-N1

Sl 53

In addition to other limits on the other scene parameters. That is, if £y occurs within a
specific range, then the corresponding state transition should be asserted according to the

above set of event description.

The problem then reduces to computing the corresponding areas under the refined distri-
bution curves obtained from the hierarchy levels. In the case of the presence of more than
a single parameter in the transition event description, then the corresponding area under
each parameter curve should be computed and multiplied for each parameter in the event
definition. The goal is to find the probability of the occurrence of each event. In the above

example, the goal would be to find the probability of ey, e; and e3.

An obvious way of using those probability values is to establish some threshold values and
assert transitions according to those thresholds. For example, if for any event in the set
(e1,e2 and e3), the computed probability of the range is > 0.85, then the corresponding
state transition should be asserted. It should be noted that those threshold values are
highly task and state-dependent, appropriate values for the thresholds can be determined
by performing many experiments for different task descriptions. The thresholds can also be
updated adaptively according to the current manipulation patterns under observation. Many
problems may arise after having obtained the above probabilities at the current automaton
state. It might be the case that none of the obtained probability values exceeds the set
threshold value and/or all values are very low. In that case, there is a good chance that we
are at either the wrong automata state, or that a gross error has occurred in manipulation

or some system failure.

The remedy to such problems can be implemented through time proximity, that is, wait for a
while (which is to be preset) till a strong probability value is registered and for reback in the
automaton model for the observer till a high enough probability value is asserted, a fail state
is reached or the initial ambiguity is asserted. The rebacking strategy can be implemented

using a stack-like structure associated with each state that has already been traversed. A



stack of the latest computed probability values sorted in descending order as an index to the
corresponding event. As soon as a forward traversal is performed, the top value should be
popped. Rebacking can be done by using the top of the stack value and do the corresponding
transition and compute the new probabilities for the events. Fo} states that have not been

visited at all, new stacks and computations should be be performed.

Having established techniques for navigating the observer, the model description is now
completed. The formulation uses uncertainties to assert current states of the manipulation
system and attempts to recover from mistakes and errors. The model uses different inter-
mediate levels for computing uncertainties, from the sensor level to the observer automaton
level. Next, we discuss some results and discuss our approach. Then, we suggest ideas for

extensions and future research.

11 Results

A substantial portion of the proposed system is already implemented and tested. Experiments
were performed to observe the robot hand. The Lord experimental gripper is used as the
manipulating hand. Different views of the gripper are shown in Figures 24.a to 24.c. Feature
tracking is performed for some dots on the gripper in real time, using the Maxvideo system.
Approximate algorithms to allow linearizing the optical system are used as described in
section 8.2. A static look-and-move strategy was then used for tracking the hand features.
The visual tracking system works in real time and a position control vector is supplied to

the observer manipulator.

The 2-D uncertainty levels were tested. Edge detection with uncertainty is performed using
different noise levels as shown in section 6, the enclosing “envelopes” were determined for the
mechanical system and plotted in 3-D in section 7, the rejection algorithms are completed.
A grasping task using the Lord gripper, as seen by the observer, is shown in Figure 25.a to
25.d. The sequence is defined by our model, and the visual states correspond to the gripper

movement as it approaches an object an then grasps it.

The image flow algorithm described in section 4.1 is tested on the image of the gripper. The
2-D flow vectors resulting from the detection algorithm when applied to diagonal movements

of the gripper’s image are shown in Figures 26.a and 26.b. The motion was upwards to the



left and downwards to the right. It can be seen that the resulting optic flow vectors are
consistent with the actual motion. The image gaussian pyramid of the gripper is shown in
Figure 27, the pyramid is formed by successive applications of gaussian low-pass filtering
and decimation by half, five levels of the pyramid are shown. Simi)le segmentation and edge
tracing are shown in Figure 28 and 29, as applied to the hand. Thus, event identification for
the motion of the hand is computed. Tracking mechanisms are demonstrated and shown to

work in real-time to follow the hand, uncertainty levels are also developed.

12 Discussion

We have proposed a new approach to solving the problem of observing a moving agent. In
particular, we described a system for observing a manipulation process. OQur approach uses
the formulation of discrete event dynamic systems as a high-level model for the {framework
of evolution of the hand/object relationship over time. The proposed system utilizes the a-
priori knowledge about the domain of the manipulation actions in order to achieve efficiency

and practicality.

We started by describing the automaton model of a discrete event dynamic system then
proceeded to formulate frameworks for the manipulation processes, and the observer con-
struction. We developed efficient low-level event-identification mechanisms for determining
different manipulation movements in the system and for moving the observer. Next, we
defined and constructed six different levels for converting the raw 2-D image data into mean-
ingful 3-D descriptions of the world events. The formulation includes computing uncertainty
models resulting from errors in the 2-D and 3-D recovery mechanisms. The formulation al-
lows the observer to navigate in real time with a stable behaviour through the automaton

state space and thus assert world events efficiently.

The approach used can be considered as a frame work for a variety of visual tasks, as it lends
itself to be a practical and feasible solution that uses existing information in a robust and
modular fashion. The work examines closely the possibilities for errors, mistakes and uncer-
tainties in the manipulation system, observer construction process and event identification
mechanisms. Ambiguities are allowed to develop and are resolved after finite time, recov-

ery mechanisms are devised too. Theoretical and experimental aspects of the work supports



adopting the framework as a new kind of basis for performing many task-oriented recognition,
inspection and observation of visual phenomenons. In the next section we examine extension
ideas and future research opportunities for which the formulation can be considered as the

backbone.

13 Extensions and Future Research

The proposed formulation can be extended to accommodate for more manipulation processes.
Increasing the number of states and expanding the events set would allow for a variety of
manipulating actions. The system can be made more “modular” by constructing a general
automaton model of a discrete event dynamic system and defining the states, events and
the certainty thresholds for them in an automatic way through a learning stage. In other
words, different manipulation actions can be performed and “shown” to the observer and
then the possible states, events and sequences of operations are automatically embedded in
the general dynamic model. Thus, the manual formulation of the DEDS model for the task

would not be needed anymore.

More powerful models for the DEDS could be sought, for example, context sensitive gram-
mars, pushdown automata, turing machines and/or p-recursive functions. The model build-
ing process can be thought of as forming a compiler with the object, sensor, task description
and learning model as inputs, and the algorithm to follow the observer automaton with un-
certainty as the output. Feedback can be supplied to the manipulating system in order to
correct its actions, thus closing the vision-manipulation loop. The system could be gener-
alized to an arbitrary number of mobile manipulating robots and mobile observing ones, a
scheme would have to be devised to allow for distributed and parallel control of the obser-
vation and feedback process in an efficient way and to prevent deadlock and/or starvation

problems.

The characteristics of the workspaces of both the manipulating robot and the observer can
be utilized in order to avoid problems like collision and occlusion. This might be necessary
to explore if both workspaces intersect in a 3-D volume. This can occur in a simple lab-
oratory setup with two fixed manipulators, visualizing the volume of intersection and the

holes and voids [1] within each robot reachable workspace will be necessary for planning and
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constructing the model and its observer.

Foveal and peripheral vision strategies can be applied to “focus” on a specific aspect of the
scene under considerations, according to the present observer state. Pyramid approaches for
locating actions can be used. Logarithmic sensors, like cameras whose CCD array resembles
the human eye can be utilized as the observer’s visual sensor for shifting attention to the

interesting parts of the image.

Parallelizing the whole process by forming simultaneous observers can be explored. This
will be necessary in case of multiple observing robots, manipulating robots and/or different
kinds of sensors (tactile, range, vision ..etc) so as to allow for modular and efficient planning,
“seeing” and recovery mechanisms. Inter-parallelization of different algorithms should be
explored too. Overcoming delays in communication links between different observers and
between the vision, control and parallelization modules within the same observer module
should be addressed, specially if the modules are physically distant within the laboratory
setup. Overcoming delays when feedback is supplied to the manipulating hand would be

necessary.

The idea of DEDS as skeletons for observation under uncertainty can be explored further
to allow for various other visual tasks. We discussed observing manipulation as a subset of
observing moving agents, however, similar formulation can be described for other tasks, like
recognizing stationary objects with optimal observation costs, i.e, minimal motion events.
Perturbation analysis [17,35] can be performed for the average task behaviour of frequent
visual events within a specified manipulation domain. Disappearing objects and partially
occluded objects can also be recognized optimally using the proposed scheme, using time
proximity as another dimension for asserting the identity of different targets, that is, allow

recognition and/or tracking to be completed within a pre-specified, task-dependent time

frame.
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