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Abstract

This work examines closely the possibilities for errors, mistakes and uncertainties in sensing sys-
tems. We identify and suggest techniques for modeling, analyzing, and recovering these uncertainties.
This work concentrates on uncertainties in visual sensing to recover 3-D structure and motion char-
acteristics of the scene under observation, however, we conjecture that the approaches described
here are suitable for other sensors and parameters to be recovered. The computed uncertainties are
utilized for reconstructing the scene under observation.
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Abstract

This work examines closely the possibilities
for errors, mistakes and uncertainties in sens-
ing systems. We identify and suggest tech-
niques for modeling, analyzing, and recovering
these uncertainties. This work concentrates
on uncertainties in visual sensing to recover 3-
D structure and motion characteristics of the
scene under observation, however, we conjec-
ture that the approaches described here are
suitable for other sensors and parameters to
be recovered. The computed uncertainties are
utilized for reconstructing the scene under ob-
servation.

1 Introduction

In this work we discuss uncertainty modeling for sensor
systems. In particular, we describe some techniques for
measuring and computing the uncertainties in recover-
ing some visual parameters. We concentrate on pre-
senting the sources of uncertainty in two dimensional
visual data. Then we proceed to identify methods by
which the 2-D uncertainty could be transformed into
meaningful 3-D interpretations that the observer can
use reliably in order to recover the world events. Those
methods can be generalized for other sensing problems
and parametric recovery from sense data.

Figure 1 depicts the sequence of steps that are to
be performed in order to recover the full world uncer-
tainty from 2-D measurements on the image plane. We
start by recognizing the sensor uncertainty, then we re-
cover the uncertainty resulting from the image process-
ing technique that is used, the resulting 2-D uncertain-
ties are then refined and used to determine the 3-D mod-
els. In the following sections we discuss this sequence.

2 Sensor and Image Processing
Uncertainties

In this section we develop and discuss modeling the un-
certainties in 2-D feature displacement vectors. There
are many sources of errors and ways to model un-
certainties in image processing and sensing in general

2-D Data

Strategy

Uncertainty Unocertainty

Full 2-D
Unoertainty
Refined 2-D
Uncertainty

Recovered 3-D
Uncertainty Models

3-D Data

Figure 1: Propagation of Uncertainty

[5,8,15,16]. The uncertainty in the recovered values re-
sults from sensor uncertainties, noise, and the image
processing techniques used to extract and track world
features. When dealing with measurements of any sort,
it 1s always the case that the measurements are accom-
panied by some error. Mistakes also occur, where mis-
takes are not large errors but failures of a system com-
ponent or more. A description of errors, mistakes can

be found in [2,3].

2.1 Image Formation Errors

There is a need to register errors in mapping from the
3-D world features to the 2-D domain which we use in
forming 3-D hypothesis about the scene under observa-
tion. The accuracy, precision and modeling uncertainty
of the camera (as our sensor, in this case) is an im-
portant issue and the first step towards forming a full
uncertainty model for recovering the 3-D scene.

In figure 2 (redrawn from [3]), a model of the image
formation process is illustrated, which lists some salient
features of each component. As a lot of the image pro-
cessing algorithms compute derivatives of the intensity
function, noise in the image will be amplified and prop-
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Figure 2: Image Formation

agated throughout the observation process. The goal
of this treatment is to find a distribution for the uncer-
tainty of mapping a specific 3-D feature into a specific
pixel value. In other words, if the feature 2-D position
was discovered to be (i,j), then the goal is to find a
2-D distribution for ¢ and j, assuming that there is no
uncertainty in the technique used to extract the 2-D
feature.

The end product of modeling the sensor uncertainty is
to be able to assert the following: “The 3-D feature F is
located in the 2-D pixel position (¢, j) with probability
p1 or located in the 2-D pixel position (4,7 + 1) with
probability p, or .... given that the registered location
is (I, m), such that p; +ps + ..... + pn =1, and A error
in the 2-D feature recovery mechanism.”

The errors in the image formation process are basi-
cally of two different kinds. The first type is a spatial
error, the other type is a temporal error. The spatial er-
ror due to the noise characteristics of a CCD transducer
can be due to many reasons, among which are dark sig-
natures and illumination signatures. The technique to
be used is to take a large number of images, we can
denote the image intensity function as a 3-D function
I(u,v,t), with spatial arguments u and v and temporal
argument ¢{. The sample mean of the image intensities
over N time samples can be denoted by I(u,v).

N
T(u,v) = %Zl(u,v,t)
t=1

The spatial variance in a 5 X 5 neighborhood of the
means is computed by:

Swo)= 3 3 T(u+i,v+5) - T(u,0))?

i=—2j=-2

The dark signature of the camera can be determined

by computing I(u, v) of each pixel with the lens cap on.
It will be found that a small number of pixels will have
non-zero mean and non-zero variance. The specific pixel
locations are blemished and should be registered. The
uniform illumination is computed by placing a nylon
diffuser over the lens and computing the mean and vari-
ance. It will be noticed that due to digitizing the CCD
array into a pixel array of different size, and the differ-
ence in sample rates between the digitizer and camera,
the border of the image will have different mean and
variance from the interior of the image. Some “stuck”
pixels at the location of the blemished pixels will also
be noted. The contrast transfer function will also be
noted to vary at different distances from the center of
the lens.

Temporal noise characteristics can also be identified
by taking a number of experiments and notice the time
dependency of the pixels intensity function. In our
treatment and for our modeling purposes we concen-
trate on the spatial distribution of noise and its effect
on finding the 2-D uncertainty in recovering a 3-D fea-
ture location in the pixel array.

2.2 Calibration and Modeling Uncer-
tainties

Methods to compute the translation and rotation of
the camera with respect to its coordinates, as well as
the camera parameters, such as the focal length, radial
distortion coefficients, scale factor and the image ori-
gin, have been developed and discussed in the literature
[4,10,14]. In this section we use a static camera calibra-
tion technique to model the uncertainty in 3-D to 2-D
feature locations. In particular we use the sequence of
steps used to transform from 3-D world coordinates to
computer pixel coordinates in order to recover the pixel
uncertainties, due to the sensor noise characteristics de-
scribed previously.

A sequence of calibration steps is used for a coplanar
set of points in order to obtain the rotation and trans-
lation matrices, in addition to the camera parameters.
The input to the system are two sets of coordinates,
(Xy,Yy), which are the computer 2-D pixel image co-
ordinates in frame memory and (£w, Y, zw), Which are
the 3-D world coordinates of a set of coplanar points
impressed on a piece of paper with known inter-point
distances. A discussion of the exact mathematical for-
mulation of the inter-step computations to find all the
parameters can be found in [4].

Our approach is to treat the whole camera system as
a black box and make input/output measurements and
develop a model of its parametric behavior. The next
step is to utilize the recovered camera parameters and
the number of 3-D points which we created in order to
formulate a distribution of the 2-D uncertainty.

The points used in calibration and later in recovering
the distribution can be the actual features in the scene
that are to be recovered and thus providing a similar



experimental environment to the one that the camera
will operate in.

The strategy used to find the 2-D uncertainty in
the features 2-D representation is to utilize the recov-
ered camera parameters and the 3-D world coordinates
(Zw, Yuw, 2w) of the known set of points and compute the
corresponding pixel coordinates, for points distributed
throughout the image plane a number of times, find
the actual feature pixel coordinates and construct 2-
D histograms for the displacements from the recovered
coordinates for the experiments performed. The num-
ber of the experiments giving a certain displacement
error would be the z axis of this histogram, while the
z and y axis are the displacement error. Different his-
tograms can be used for different 2-D pixel positions
distributed throughout the image plane. The three di-
mensional histogram functions are then normalized such
that the volume under the histogram is equal to 1 unit
volume and the resulting normalized function is used as
the distribution of pixel displacement error, thus mod-
eling the sensor uncertainty. The black box approach is
thus used to model errors in a statistical sense.

2.3 Image Processing Uncertainties

In this section we describe a technique by which devel-
oping uncertainties due to the image processing strategy
can be modeled. In addition, we end the discussion by
combining both the sensor uncertainties developed in
the previous section and the models developed in this
section to generate distribution models for the uncer-
tainty in estimating 2-D motion vectors. These models
are to be used for determining the full uncertainty in
recovering the 3-D scene under observation.

We start by identifying some basic measures and ideas
that are used frequently to recognize the behavior of
basic image processing algorithms and then proceed to
describe the technique we use in order to compute the
error model in locating certain features from their 2-D
representation in the pixel array. We concentrate on
modeling the error incurred in extracting edges, as edge
extraction is a very popular mechanism that is used for
both identifying features and also for computing 2-D
contours of the objects under observation.

Edge extraction strategies and methods to evalu-
ate their performance qualitatively and quantitatively
have been presented and discussed in the literature
[1,6,7,9,11,12,13]. There are many types of edges, ideal,
ramp and noisy edges are only three of them. Different
curvatures in the edges also constitute another dimen-
sion to be taken into consideration when it comes to
asserting the types of edges that exist.

The goal of developing the error models for edge ex-
traction to to be able assert the following: “Given that
the 2-D feature recovered using the edge recovery S is in
pixel position (z, y), then there is a probability that the
feature was originally at pixel position (z + 1,y) with
probability p; or .... etc. due to the noise in the pixel

image, such that p; + p2 + .... + pn = 1.” The problem
is to find the probabilities.

1t should be obvious that there may be different types
of noises and also different levels of those types that
might vary at different locations in the sensor image
plane. This adds to the different models that we might
have to construct. Our approach is to use ideal, that is,
synthesized edges of different types, locations and also
orientations in image frames then corrupt them with dif-
ferent kinds and levels of noises. As we know the ideal
edge points from the ideal image, for which we shall use
the edge detector that is to be used in actual experiment
to observe a scene. The corrupted images will then be
operated upon by the detector and the edge points lo-
cated. The edge points will differ from the ideal im-
age edge points. The problem reduces to finding corre-
sponding edge points in corrupted and ideal images then
finding the error along a large number of edge points.
A 2-D histogram is then constructed for the number of
points with specific displacement errors from the ideal
point. The volume of the histogram is then normal-
ized to be equal to 1, the resulting 3-D function is the
2-D probability density function of the error of displace-
ments. The correspondence between edge points in the
corrupted and ideal images is established by choosing
the point with the minimal distance from the ideal edge
point, such that it does not correspond to another ideal
edge point. The histogram is constructed for each edge
and then normalized.

2.4 Computing 2-D Motion Uncertainty

In this section we describe how to combine sensor
and image processing strategy error models to compute
models for the recovered 2-D flow values (difference be-
tween locations of features over frames). To simplify the
idea, let’s assume that we have recovered a specific fea-
ture point (z3,y1) in an image grabbed at time instant
t and the corresponding point (23, y2) at time t+1. The
problem is to figure out the distribution of v;. As an ex-
ample, to explain the procedure, let’s assume that from
the 3-D sensor distribution we have have computed the
marginal density function of the x coordinate of z; in
the point:

fx(z) = /H Fry (@, 9)dy

where R is all the possible y values within the sensor
uncertainty model.

The same process is applied for the strategy distribu-
tion and another function is recovered. To simplify the
process, lets assume that both distributions are identi-
cal to the distribution in figure 3, that is, there is an
equal probability equal to 3 that the x coordinate is
the same, or shifted one position to the left or the right.
Combining the spatial information of both distributions
as a convolution process would produce the distribution
shown in figure 4, which is the error probability density



Figure 3: Distribution of the z-Coordinate Displace-
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Figure 4: Combined Sensor and Strategy Distribution

function of having the 3-D feature z 2-D coordinate in
the recovered image 2-D z position. Further more, as-
sume that z, distribution is the same.

The problem reduces to finding the distribution of
the optic flow £ component, using these two combined
distributions. As an example, if z; = 10 and ¢4 = 22,
then all probability statements can be easily computed,
a set of some of these probability statement is shown :

P(v, = 8):P((1,'1 = 12) Afze = 20)):% X %:%
Pl = 9)=P(((z1 = 12) A (z2 = 21)) V ((z1 = 11)
/\(1?2 = 20))):(% X %) + (% X %):%

P(vz = 10|z, = 10)=L(21710822220) ‘Z‘:%

Consequently, all distributions and expected values
can be computed from the combination of the sensor
level and strategy level uncertainty formulation. In the
next section we discuss a method for refining the mea-
sured 2-D motion vectors and we then proceed to formu-
late the 3-D modeling of the scene under observation.

3 Refining Image Motion

In this section we describe a method to refine the re-
covered 2-D motion vectors on the image plane. Having
obtained from the sensor and extraction strategy uncer-
tainty levels distribution estimates for the image flow of
the different features, we now try to eliminate the un-
realistic ones. We concentrate on the flow estimates for
the motion of the scene and develop a technique that is
to be used during the observation process as a means
to reject faulty estimates. Faulty estimates can results
from noise, errors or mistakes in the sensor acquisition
process, or visual problems like occlusion, modeling the
uncertainties in the previous two levels may still leave
room for such anomalies.

Knowing some properties of the scene under obser-
vation (mechanical and physical) would help in refining
our 2-D estimates. We did a number of experiments to

Figure 5: Fitting Parabolic Curves

track a robot hand (gripper) performing some manip-
ulation tasks. The features to be tracked on the hand
lie on planar surfaces, the modification would be very
simple to allow for arbitrary 3-D positions of the fea-
ture distribution. Since we know a-priori some informa-
tion about the mechanical capabilities and limitations
and geometric properties of the hand under observation,
also about the rate of visual sampling for the camera,
we are able to assert some limits on some of the visual
parameters in our system.

To illustrate the idea behind the approach, consider
figure 5, assume all the curves are 2-D parabolic func-
tions y = az? + bx + ¢, if the set of data points are as
shown in the figure, then a least square error fit will pro-
duce the function D. However, if we know some upper
and lower limits on the values of the coefficients a, b and
c then we might be able to construct an upper and lower
function parabolas A and C as an enclosing envelope,
outside which we can reject all the data points. In that
case, we can do a fit for the points that lie inside the
envelope and obtain a more realistic function as shown
by the curve B.

The situation for rejecting estimates for the image
flow of features is not much different. We know the
equations that govern the behavior of the image flow as
a function of the structure and 3-D motion parameters,
as follows :

Vz Vx
s = (1 — — = 2
vy = (1 — pz — qy) (xzo Z0)+

[zny - (1 + :cz) Qy + sz]

Vz W
vy = (1 — pz — q) (yEZ——Z—Y)+

[(1 + y2) Qx — :L‘yQy - .’cQz]

Which are second degree functions in z and y in three
dimensions, vz = fi(z,y) and v, = fo(z,y).

In addition, we know upper and lower limits on the
coefficients p, ¢, Vx, W, Vz, Qx, Qy, Qz and Z,
(Translational and rotational velocities and structure of
the scene), as we know that the mechanical abilities of
the robot arm holding the hand will make the relative
velocity and distance between the camera impossible
to exceed specific values within a visual sampling tim-
ing period. So the problem reduces to constructing the



Figure 7: Maximal and Minimal Flow Magnitude

three dimensional envelopes for v, and vy as the worst
case estimates for the flow velocity and rejecting any
measured values that lie outside that envelope. Figure
6 indicates the maximal and minimal v, that can ever
be registered on the CCD array of the camera, the z
and y are in millimeters and the 2 — y plane represents
the CCD image plane, the depth Z is the maximal v,
in millimeters on the CCD array that can ever be reg-
istered. It can be noticed that they are symmetric due
to the symmetry in the limits of the coefficients.

As an example, we write the equation governing the
maximum v, value in the first quadrant of the z — y
plane (z*,y*).

_{ fVx, Vz, , maz(piVx,, p.Vx,)
"’m‘( z., T )tz 1 Z..

+ (ma"’(‘h‘;xn%vx.) +QZ,) y

+ (2}9_ _ mi"(Qsz.,quz,)) .
f ont

min(piVz,,p,Vz,) QY-) 2
_ +—= )z
( fZ,, f

where the subscripts s and | denote lower and up-
per limits, respectively. At first sight the problem of
determining the maximum value of v, seems to be a
constrained non linear optimization problem, which is
true, however, assuming that the upper and lower limits
of the coeflicients are equal in magnitude and opposite
in directions (except for Z,, which is used only as Zj:)
makes the input to the maz and min functions in the
above equations always equal and thus providing one
more degree of freedom in choosing the parameters and
making the choice consistent throughout the equation.

Thus the problem becomes simply to write eight equa-
tions as the above one for each of v; and vy, to draw
the function in each of the four quadrants for maximum
and minimum envelopes. We shall not rewrite the six-
teen equations here, but we show the results for v, in
figure 6, figure 7 represents the maximum and minimum
magnitude m(z, y) for the the image flow at any given

point, where :
m(z,y) = 1/v2 + v}

It should be noted that the maximum absolute pos-
sible value of the image flow is minimal at the origin of
the camera image plane and increases quadratically as
the distance increases from the center.

The above envelopes are then used to reject unrealis-
tic 2-D velocity estimates at different pixel coordinates
in the image.

4 Recovering 3-D Uncertainties

We now use the classical formulation for 3-D parame-
ter recovery from 2-D displacement vectors, but using
2-D error distributions as estimates for motion and/or
feature coordinates in order to compute 3-D uncer-
tainty distributions for the real world motion vectors
and structure instead of singular values for the world
parameters.

As an example to illustrate the idea, let’s assume that
we have a linear system of equations as follows :

z+3y=2

20 +y =22

) The solution of this system is very easily obtained as
z.

x—§z —lz
T52 5
_2 1
y_5z1 522

That is, a linear combination of the right hand side
parameters. If the parameters z; and z; were random
variables of known probability distributions instead of
constants, then the problem becomes slightly harder,
which is, to find the linear combination of those ran-
dom variables as another random variable. The obvious
way of doing this would be to use convolutions and the
formula :

Px,+x,(¥) = ) Pxyxa (2,9 — =)
R

for the sum of two random variables X, X, for any
real number y and/or the formula for linear combina-
tions over the region R, which is for all z such that
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Figure 8: Cumulative Density Functions of the Trans-
lational Velocity

Px, x,(z,y — z) > 0. Using the moment generating
function or the characteristic function seems also to be
a very attractive alternative. The moment generating
function M of a linear combination of random variables,
for example X, X3 can be written as :

MaX1+bX2+c(t) =% (Mxl(at)sz (bt))

for independent random variables X;, X;. That
is, the problem of solving linear systems on the form
Az = b, where b is a vector of random variables, may be
reduced to finding closed form solutions for z in terms
of the random parameters (using any elimination tech-
nique) and then manipulating the results and finding
different expectations using moment generating or char-
acteristic functions.

The solutions we suggest to this problem of finding
the random variable solution of the 3-D parameters uti-
lize the techniques we described in the previous section.
Using either the two-frame iterative technique or the
closed form algorithms, it should be noticed that the
problem reduces to either solving multi-linear systems
or a single one. In that case, using elimination and
characteristic functions for computing the required ex-
pectations and distributions is straight forward. As an
example, the recovered 3-D translational velocity cu-
mulative density functions (CDF) for an actual world
motion of the observed gripper in our experiment equal
to :

Vx =0cem, Vy =0cmand Vz =13 em

is shown in figure 8. It should be noted that the
recovered distributions represents a fairly accurate esti-
mation of the actual 3-D motion.

Thus, we have suggested algorithms for the estima-
tion of the 3-D uncertainties in the structure and motion
of a scene under camera observation.

5 The Experimental System

The design and the experiments for the proposed un-
certainty recovering formulation were performed on the
architecture shown in Figure 9. The agent under obser-
vation is the Lord experimental gripper and is mounted
on a PUMA 560. The robot and the hand are essen-
tially moved by an external operator to perform some
actions on a set of objects lying on a table.

Puma 560
Joint Angles (2 H:

Micro Vax Il

Target Positi
o

Requ

Refined Data

Su
Requests Refincd Data

Figure 9: The Architecture of the System

The observer sensor is another PUMA 560 on which
a camera is mounted. The low level visual feature ac-
quisition is performed on the MaxVideo pipelined video
processor at framerate. In particular, there are two sep-
arate paths from the vision sensor. One path is for the
computation of the hand 3-D position and orientation
and this is done through the MaxVideo. The other path
(the inner loop) is done on a SparcStation, in which the
image processing modules resides, those modules com-
pute 2-D cues from the scene under observation. Iden-
tification of objects, their location with respect to the
hand and establishing contact, and correlation proce-
dures are all performed within the inner loop. The 2-D
to 3-D conversion and probability computations are per-
formed on another SparcStation. Thus future modifica-
tions and enhancements could be coded and executed
in a simple and modular fashion. Enhanced Low-level
modules for segmentation and 2-D understanding of the
image and to accommodate different kinds of objects in
the scene could be coded within the inner-loop computer
module.

A number of experiments were performed with the
lord gripper doing different manipulating action an a
set of different objects. Tracking is performed for some
features on the gripper, using the MaxVideo system.
The visual tracking system works in real time. The 2-D
uncertainty levels were tested. Feature extraction with
uncertainty is performed using different noise levels, the
enclosing “envelopes” were determined for the mechan-
ical system, the rejection algorithms are completed and
utilized. The refined and recovered 3-D CDF distribu-
tion of uncertainties were then recovered.

Some snap shots depicting the observer view, within
an experiment that involves grasping and lifting is
shown in figure 10. The the corresponding uncertainty
in assigning motion and structure values, based on the
CDF distribution of the recovered parameters is recov-
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Figure 10: A Manipulation Sequence (Observer View)



ered and displayed.

6 Conclusions

We have described methods to recover the parameters
of a scene under observation from sense data with un-
certainty. We believe that the approach provides for a
sensing strategy that utilizes knowledge about the sen-
sor errors, the sensory processing uncertainty, and the
physical features of the scene under observation. The
presented techniques allow the robust recovery of the
observed environment.

References

[1] I. E. Abdou and W. K. Pratt, “Quantitative De-
sign and Evaluation of Enhancement/Thresholding
Edge Detectors”, Proceedings of the IEEE, Vol. 67,
No. 5, May 1979.

[2] H. L. Anderson, GRASP lab. Camera Systems and
Thesr Effects on Algorithms, Technical Report MS-
CIS-88-85 and GRASP lab. TR 161, University of
Pennsylvania, 1988.

[3] R. Bajcsy, E. Krotkov and M. Mintz, Models of
Errors and Mistakes in Machine Perception, Tech-
nical Report MS-CIS-86-26 and GRASP lab. TR
64, University of Pennsylvania, 1986.

[4] N. M. Benahmed, Camera Calibration for Dynamic
Environment. M.S. Thesis, Department of Electri-
cal Engineering, University of Pennsylvania, 1989.

[6] A. Cameron and H. Wu, “A Framework for Sen-
sory Planning”, In Proceedings of the International
Conference on Automation, Robotics and Com-
puter Vision (ICARCV °90), Singapore, Septem-
ber 1990.

[6] E. S. Deutsch and J. R. Fram, “A Quantitative
Study of the Orientation Bias of some Edge Detec-
tor Schemes”, IEEE Trans. Comput., C-27, No. 3,
March 1978.

[7] J. R. Fram and E. S. Deutsch, “On the Quan-
titative Evaluation of Edge Detection Schemes

and Their Comparison with Human Performance”,
IEEE Trans. Comput., C-24, No. 6, June 1975.

[8] G. D. Hager, Active Reduction of Uncertainty in
Multi-Sensor Systems, Ph.D. Thesis, Computer
and Information Science Department, University of
Pennsylvania, July 1988.

[9] R. M. Haralick and J. S. J. Lee, “Context De-
pendent Edge Detection and Evaluation”, Pattern
Recognation, Vol. 23, No. 1/2, pp. 1 - 19, 1990.

[10] A.Izaguirre, P. Pu and J. Summers, “A New Devel-
opment in Camera Calibration: Calibrating a Pair
of Mobile Cameras”, In Proceedings of the Inter-
national Conference on Robotics and Automation,

pp. 74-79, 1985.

[11] L. Kitchen and A. Rosenfeld, “Edge Evaluation Us-
ing Local Edge Coherence”, IEEE Transactions on
Systems, Man, and Cybernetics, SMC-11, No. 9,
September 1981,

[12] E. Krotkov, Results in Finding Edges and Corners
in Images Using the First Directional Derivative,
Technical Report MS-CIS-85-14 and GRASP lab.
TR 37, University of Pennsylvania, 1985.

[13] T. Peli and D. Malah, “A Study of Edge Detec-
tion Algorithms”, Computer Graphics and Image
Processing, vol. 20, 1982, pp. 1-21.

[14] R. Y. Tsai, “An Efficient and Accurate Camera
Calibration Technique for 3-D Machine Vision”,
IBM Report.

[15] R. Wilson and G. H. Granlund, “The Uncer-
tainty Principle in Image Processing”, IEEE Trans.
PAMI, Vol. 6, No. 6, November 1984.

[16] H. Wu and A. Cameron, A Bayesian Decision The-
oretic Approach for Adaptive Goal-directed Sens-
ing, Technical Report, Philips Laboratories, New
York, May 1990.



