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Abstract 

This work examines closely the possibilities 
for errors, mistakes and uncertainties in sens­
ing systems. We identify and suggest tech­
niques for modeling, analyzing, and recovering 
these uncertainties. This work concentrates 
on uncertainties in visual sensing to recover 3-
D structure and motion characteristics of the 
scene under observation, however, we conjec­
ture that the approaches described here are 
suitable for other sensors and parameters to 
be recovered. The computed uncertainties are 
utilized for reconstructing the scene under ob­
servation. 

1 Introduction 

In this work we discuss uncertainty modeling for sensor 
systems. In particular, we describe some techniques for 
measuring and computing the uncertainties in recover­
ing some visual parameters. We concentrate on pre­
senting the sources of uncertainty in two dimensional 
visual data. Then we proceed to identify methods by 
which the 2-D uncertainty could be transformed into 
meaningful 3-D interpretations that the observer can 
use reliably in order to recover the world events. Those 
methods can be generalized for other sensing problems 
and parametric recovery from sense data. 

Figure 1 depicts the sequence of steps that are to 
be performed in order to recover the full world uncer­
tainty from 2-D measurements on the image plane. We 
start by recognizing the sensor uncertainty, then we re­
cover the uncertainty resulting from the image process­
ing technique that is used, the resulting 2-D uncertain­
ties are then refined and used to determine the 3-D mod­
els. In the following sections we discuss this sequence. 

2 Sensor and Image Processing 
Uncertainties 

In this section we develop and discuss modeling the un­
certainties in 2-D feature displacement vectors. There 
are many sources of errors and ways to model un­
certainties in image processing and sensing in general 
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3-D Dola 

Figure 1: Propagation of Uncertainty 

[5,8,15,16]. The uncertainty in the recovered values re­
sults from sensor uncertainties, noise, and the image 
processing techniques used to extract and track world 
features. When dealing with measurements of any sort, 
it is always the case that the measurements are accom­
panied by some error. Mistakes also occur, where mis­
takes are not large errors but failures of a system com­
ponent or more. A description of errors, mistakes can 
be found in [2,3]. 

2.1 Image Formation Errors 

There is a need to register errors in mapping from the 
3-D world features to the 2-D domain which we use in 
forming 3-D hypothesis about the scene under observa­
tion. The accuracy, precision and modeling uncertainty 
of the camera (as our sensor, in this case) is an im­
portant issue and the first step towards forming a full 
uncertainty model for recovering the 3-D scene. 

In figure 2 (redrawn from [3]), a model of the image 
formation process is illustrated, which lists some salient 
features of each component . As a lot of the image pro­
cessing algorithms compute derivatives of the intensity 
function, noise in the image will be amplified and prop-
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Figure 2: Image Formation 

agated throughout the observation process_ The goal 
of this treatment is to find a distribution for the uncer­
t~inty of mapping a specific 3-D feature into a specific 
pixel value. In other words, if the feature 2-D position 
was discovered to be (i, j), then the goal is to find a 
2-D distribution for i and j, assuming that there is no 
uncertainty in the technique used to extract the 2-D 
feature. 

The end prod uct of modeling the sensor uncertainty is 
to be able to assert the following: "The 3-D feature F is 
located in the 2-D pixel position (i,j) with probability 
PI or l??ated in the 2-D pixel position (i, j + 1) with 
probabIlIty P2 or .... gwen that the registered location 
!s (I, m), such that PI + P2 + ..... + Pn = 1, and ,B error 
In the 2-D feature recovery mechanism." 

The errors in the image formation process are basi­
cally of two different kinds. The first type is a spatial 
error, the other type is a temporal error. The spatial er­
ror due to the noise characteristics of a CCD transducer 
can be due to many reasons, among which are dark sig­
natures <l:nd illumination signatures. The technique to 
be used IS to take a large number of images, we can 
denote the image intensity function as a 3-D function 
I(u, v, t), with spatial arguments u and v and temporal 
argument t. The sample mean of the image intensities 
over N time samples can be denoted by I(u, v). 

1 N 
I(u, v) = N L I(u, v, t) 

t=1 

The spatial variance in a 5 x 5 neighborhood of the 
means is computed by: 

2 2 

s2(u, v) = L L (J(u + i, v + j) - I(u, v))2 
i=-2j=-2 

The dark signature of the camera can be determined 

by computing J(u, v) of each pixel with the lens cap on. 
It will be found that a small number of pixels will have 
non-zero mean and non-zero variance. The specific pixel 
locations are blemished and should be registered . The 
uniform illumination is computed by placing a nylon 
diffuser over the lens and computing the mean and vari­
ance. It will be noticed that due to digitizing the CCD 
array into a pixel array of different size, and the differ­
ence in sample rates between the digitizer and camera, 
the border of the image will have different mean and 
variance from the interior of the image. Some "stuck" 
pixels at the location of the blemished pixels will also 
be noted. The contrast transfer function will also be 
noted to vary at different distances from the center of 
the lens. 

Temporal noise characteristics can also be identified 
by taking a number of experiments and notice the time 
dependency of the pixels intensity function. In our 
treatment and for our modeling purposes we concen­
trate on the spatial distribution of noise and its effect 
on finding the 2-D uncertainty in recovering a 3-D fea­
ture location in the pixel array. 

2.2 Calibration and Modeling Uncer­
tainties 

Methods to compute the translation and rotation of 
the camera with respect to its coordinates, as well as 
the camera parameters, such as the focal length radial 
distortion coefficients, scale factor and the im~ge ori­
gin, have been developed and discussed in the literature 
[4,10,14]. In this section we use a static camera calibra­
tion technique to model the uncertainty in 3-D to 2-D 
feature locations. In particular we use the sequence of 
steps used to transform from 3-D world coordinates to 
computer pixel coordinates in order to recover the pixel 
uncertainties, due to the sensor noise characteristics de­
scribed previously. 

A sequence of calibration steps is used for a coplanar 
set of points in order to obtain the rotation and trans­
lation matrices, in addition to the camera parameters. 
The input to the system are two sets of coordinates 
(X~, Yf), ~hich are the computer 2-D pixel image c~ 
ordinates In frame memory and (xw, Yw, zw), which are 
the 3-D world coordinates of a set of coplanar points 
impressed on a piece of paper with known inter-point 
distances. A discussion of the exact mathematical for­
mulation of the inter-step computations to find all the 
parameters can be found in [4]_ 

Our approach is to treat the whole camera system as 
a black box and make input/output measurements and 
develop a model of its parametric behavior. The next 
step is to utilize the recovered camera parameters and 
the number of 3-D points which we created in order to 
formulate a distribution of the 2-D uncertainty. 
Th~ p~int~ used in calibration and later in recovering 

the dIstrIbutIOn can be the actual features in the scene 
that are to be recovered and thus providing a similar 



experimental environment to the one that the camera 
will operate in. 

The strategy used to find the 2-D uncertainty in 
the features 2-D representation is to utilize the recov­
ered camera parameters and the 3-D world coordinates 
(xw, Yw, zw) of the known set of points and compute the 
corresponding pixel coordinates, for points distributed 
throughout the image plane a number of times, find 
the actual feature pixel coordinates and construct 2-
D histograms for the displacements from the recovered 
coordinates for the experiments performed. The num­
ber of the experiments giving a certain displacement 
error would be the z axis of this histogram, while the 
x and y axis are the displacement error. Different his­
tograms can be used for different 2-D pixel positions 
distributed throughout the image plane. The three di­
mensional histogram functions are then normalized such 
that the volume under the histogram is equal to 1 unit 
volume and the resulting normalized function is used as 
the distribution of pixel displacement error, thus mod­
eling the sensor uncertainty. The black box approach is 
thus used to model errors in a statistical sense. 

2.3 Image Processing Uncertainties 

In this section we describe a technique by which devel­
oping uncertainties due to the image processing strategy 
can be modeled. In addition, we end the discussion by 
combining both the sensor uncertainties developed in 
the previous section and the models developed in this 
section to generate distribution models for the uncer­
tainty in estimating 2-D motion vectors. These models 
are to be used for determining the full uncertainty in 
recovering the 3-D scene under observation. 

We start by identifying some basic measures and ideas 
that are used frequently to recognize the behavior of 
basic image processing algorithms and then proceed to 
describe the technique we use in order to compute the 
error model in locating certain features from their 2-D 
representation in the pixel array. We concentrate on 
modeling the error incurred in extracting edges, as edge 
extraction is a very popular mechanism that is used for 
both identifying features and also for computing 2-D 
contours of the objects under observation. 

Edge extraction strategies and methods to evalu­
ate their performance qualitatively and quantitatively 
have been presented and discussed in the literature 
[1,6,7,9,11,12,13]. There are many types of edges, ideal, 
ramp and noisy edges are only three of them. Different 
curvatures in the edges also constitute another dimen­
sion to be taken into consideration when it comes to 
asserting the types of edges that exist. 

The goal of developing the error models for edge ex­
traction to to be able assert the following: "Given that 
the 2-D feature recovered using the edge recovery S is in 
pixel position (x, y), then there is a probability that the 
feature was originally at pixel position (x + 1, y) with 
probability PI or .... etc. due to the noise in the pixel 

image, such that PI + P2 + .... + Pn = I." The problem 
is to find the probabilities. 

It should be obvious that there may be different types 
of noises and also different levels of those types that 
might vary at different locations in the sensor image 
plane. This adds to the different models that we might 
have to construct. Our approach is to use ideal, that is, 
synthesized edges of different types, locations and also 
orientations in image frames then corrupt them with dif­
ferent kinds and levels of noises. As we know the ideal 
edge points from the ideal image, for which we shall use 
the edge detector that is to be used in actual experiment 
to observe a scene. The corrupted images will then be 
operated upon by the detector and the edge points lo­
cated. The edge points will differ from the ideal im­
age edge points. The problem reduces to finding corre­
sponding edge points in corrupted and ideal images then 
finding the error along a large number of edge points. 
A 2-D histogram is then constructed for the number of 
points with specific displacement errors from the ideal 
point. The volume of the histogram is then normal­
ized to be equal to 1, the resulting 3-D function is the 
2-D probability density function of the error of displace­
ments. The correspondence between edge points in the 
corrupted and ideal images is established by choosing 
the point with the minimal distance from the ideal edge 
point, slIch that it does not correspond to another ideal 
edge point. The histogram is constructed for each edge 
and then normalized. 

2.4 Computing 2-D Motion Uncertainty 

In this section we describe how to combine sensor 
and image processing strategy error models to compute 
models for the recovered 2-D flow values (difference be­
tween locations offeatures over frames). To simplify the 
idea, let's assume that we have recovered a specific fea­
ture point (Xl> yt} in an image grabbed at time instant 
t and the corresponding point (X2, Y2) at time t+ 1. The 
problem is to figure out the distribution of vx • As an ex­
ample, to explain the procedure, let's assume that from 
the 3-D sensor distribution we have have computed the 
marginal density function of the x coordinate of Xl III 

the point: 

fx(x} = Lfx,y(x,y}dy 

where R is all the possible y values within the sensor 
uncertainty model. 

The same process is applied for the strategy distribu­
tion and another function is recovered. To simplify the 
process, lets assume that both distributions are identi­
cal to the distribution in fi~ure 3, that is, there is an 
equal probability equal to 3 that the x coordinate is 
the same, or shifted one position to the left or the right. 
Combining the spatial information of both distributions 
as a convolution process would produce the distribution 
shown in figure 4, which is the error probability density 
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Figure 3: Distribution of the x-Coordinate Displace­
ment 

113 

21'1 ••••••••••••••••••• 2!9 

119 ••••••••• ••••••••• 119 

-2 ·1 o 

Figure 4: Combined Sensor and Strategy Distribution 

function of having the 3-D feature x 2-D coordinate in 
the recovered image 2-D x position. Further more, as­
sume that X2 distribution is the same. 

The problem reduces to finding the distribution of 
the optic flow x component, using these two combined 
distributions. As an example, if Xl = 10 and X2 = 22, 
then all probability statements can be easily computed, 
a set of some of these probability statement is shown: 

P(v", = 8)=P((XI = 12) 1\ (X2 = 20))=i X i=il 
P(v", = 9)=P(((XI = 12) 1\ (X2 = 21)) V ((Xl = 11) 

I\(X2 = 20)))=(i x ~) + (~ X i)=8~ 
P( - 101 - 10)_P("'1=IOA",,=20 j ~~l-l 

V'" - Xl - - P("'l-IO) ;; -9 

Consequently, all distributions and expected values 
can be computed from the combination of the sensor 
level and strategy level uncertainty formulation_ In the 
next section we discuss a method for refining the mea­
sured 2-D motion vectors and we then proceed to formu­
late the 3-D modeling of the scene under observation. 

3 Refining Image Motion 

In this section we describe a method to refine the re­
covered 2-D motion vectors on the image plane. Having 
obtained from the sensor and extraction strategy uncer­
tainty levels distribution estimates for the image flow of 
the different features, we now try to eliminate the un­
realistic ones. We concentrate on the flow estimates for 
the motion of the scene and develop a technique that is 
to be used during the observation process as a means 
to reject faulty estimates. Faulty estimates can results 
from noise, errors or mistakes in the sensor acquisition 
process, or visual problems like occlusion, modeling the 
uncertainties in the previous two levels may still leave 
room for such anomalies. 

Knowing some properties of the scene under obser­
vation (mechanical and physical) would help in refining 
our 2-D estimates. We did a number of experiments to 
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Figure 5: Fitting Parabolic Curves 

track a robot hand (gripper) performing some manip­
ulation tasks. The features to be tracked on the hand 
lie on planar surfaces, the modification would be very 
simple to allow for arbitrary 3-D positions of the fea­
ture distribution. Since we know a-priori some informa­
tion about the mechanical capabilities and limitations 
and geometric properties of the hand under observation, 
also about the rate of visual sampling for the camera, 
we are able to assert some limits on some of the visual 
parameters in our system. 

To illustrate the idea behind the approach, consider 
figure 5, assume all the curves are 2-D parabolic func­
tions y = ax2 + bx + c, if the set of data points are as 
shown in the figure, then a least square error fit will pro­
duce the function D. However, if we know some upper 
and lower limits on the values of the coefficients a, band 
c then we might be able to construct an upper and lower 
function parabolas A and C as an enclosing envelope, 
outside which we can reject all the data points. In that 
case, we can do a fit for the points that lie inside the 
envelope and obtain a more realistic function as shown 
by the curve B. 

The situation for rejecting estimates for the image 
flow of features is not much different. We know the 
equations that govern the behavior of the image flow as 
a function of the structure and 3-D motion parameters, 
as follows: 

( 
Vz Vx) v", = (I - px - qy) x- - - + 
Zo Zo 

Vy = (I _ px _ qy) (y Vz _ Vy) + 
Zo Zo 

[(I + y2) Ox - xyOy - xOz] 

Which are second degree functions in X and y in three 
dimensions, v", = ft(x,y) and Vy = f2(x,y). 

In addition, we know upper and lower limits on the 
coefficients p, q, Vx, Vy, Vz, Ox, Oy, Oz and Zo 
(Translational and rotational velocities and structure of 
the scene), as we know that the mechanical abilities of 
the robot arm holding the hand will make the relative 
velocity and distance between the camera impossible 
to exceed specific values within a visual sampling tim­
ing period. So the problem reduces to constructing the 



Figure 6: Maximal and Minimal v., 

Figure 7: Maximal and Minimal Flow Magnitude 

three dimensional envelopes for v., and Vy as the worst 
case estimates for the flow velocity and rejecting any 
measured values that lie outside that envelope. Figure 
6 indicates the maximal and minimal v., that can ever 
be registered on the CCD array of the camera, the x 
and yare in millimeters and the x - y plane represents 
the CCD image plane, the depth Z is the maximal v., 
in millimeters on the CCD array that can ever be reg­
istered. It can be noticed that they are symmetric due 
to the symmetry in the limits of the coefficients. 

As an example, we write the equation governing the 
maximum v., value in the first quadrant of the x - y 
plane (x+,y+). 

Thus the problem becomes simply to write eight equa­
tions as the above one for each of v., and vy , to draw 
the function in each of the four quadrants for maximum 
and minimum envelopes. We shall not rewrite the six­
teen equations here, but we show the results for v., in 
figure 6, figure 7 represents the maximum and minimum 
magnitude m(x, y) for the the image flow at any given 
point, where: 

m(x, y) = Jv; + v~ 

It should be noted that the maximum absolute pos­
sible value of the image flow is minimal at the origin of 
the camera image plane and increases quadratically as 
the distance increases from the center. 

The above envelopes are then used to reject unrealis­
tic 2-D velocity estimates at different pixel coordinates 
in the image. 

4 Recovering 3-D Uncertainties 

We now use the classical formulation for 3-D parame­
ter recovery from 2-D displacement vectors, but using 
2-D error distributions as estimates for motion and/or 
feature coordinates in order to compute 3-D uncer­
tainty distributions for the real world motion vectors 
and structure instead of singular values for the world 
parameters. 

As an example to illustrate the idea, let's assume that 
we have a linear system of equations as follows: 

x + 3y = Zl 

2x + y = Z2 

= (_IVx. _ In )+(VZI + maX(PIVXI,P3 VX.)) x. The solution of this system is very easily obtained as 
V"m.., Z Y. Z Z . 

o. o. o. 

(
max(ql VXI' q3 Vx.) n) 

+ Z + ~ y 
o. 

where the subscripts s and I denote lower and up­
per limits, respectively. At first sight the problem of 
determining the maximum value of v., seems to be a 
constrained non linear optimization problem, which is 
true, however, assuming that the upper and lower limits 
of the coefficients are equal in magnitude and opposite 
in directions (except for Zo, which is used only as Zt,) 
makes the input to the max and min functions in the 
above equations always equal and thus providing one 
more degree of freedom in choosing the parameters and 
making the choice consistent throughout the equation. 

3 1 
x = -Z2 - -Zl 

5 5 

2 1 
y = -Zl - -Z2 

5 5 
That is, a linear combination of the right hand side 

parameters. If the parameters Zl and Z2 were random 
variables of known probability distributions instead of 
constants, then the problem becomes slightly harder, 
which is, to find the linear combination of those ran­
dom variables as another random variable. The obvious 
way of doing this would be to use convolutions and the 
formula: 

PXl+X~(Y) = LPXl'X~(X,y- x) 
R 

for the sum of two random variables X I, X 2 for any 
real number y and/or the formula for linear combina­
tions over the region R, which is for all x such that 
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Figure 8: Cumulative Density Functions of the Trans­
lational Velocity 

PXl.~2(X, Y - x) > O. Using the moment generating 
functIOn or the characteristic function seems also to be 
a ver~ attractive alternative. The moment generating 
functIOn M of a linear combination of random variables 
for example Xl, X2 can be written as : ' 

MaXl+bX2+C(t) = eet (Mxl(at)Mx2(bt)) 

for independent random variables Xl, X 2. That 
is, the problem of solving linear systems on the form 
Ax = b, where b is a vector of random variables, may be 
reduced to finding closed form solutions for x in terms 
of the random parameters (using any elimination tech­
nique) and then manipulating the results and finding 
different expectations using moment generating or char­
acteristic functions. 

The solutions we suggest to this problem of finding 
the random variable solution of the 3-D parameters uti­
lize the techniques we described in the previous section. 
Using either the two-frame iterative technique or the 
closed form algorithms, it should be noticed that the 
problem reduces to either solving multi-linear systems 
or a single one. In that case, using elimination and 
characteristic functions for computing the required ex­
pectations and distributions is straight forward. As an 
example, the recovered 3-D translational velocity cu­
mulative density functions (CDF) for an actual world 
motion of the observed gripper in our experiment equal 
to : 

Vx = 0 em, Vy = 0 em and Vz = 13 em 
is shown in figure 8. It should be noted that the 

recovered distributions represents a fairly accurate esti­
mation of the actual 3-D motion. 

Thus, we have suggested algorithms for the estima­
tion of the 3-D uncertainties in the structure and motion 
of a scene under camera observation. 

5 The Experimental System 

The design and the experiments for the proposed un­
certainty recovering formulation were performed on the 
architecture shown in Figure 9. The agent under obser­
vation is the Lord experimental gripper and is mounted 
on a PUMA 560. The robot and the hand are essen­
tially moved by an external operator to perform some 
actions on a set of objects lying on a table. 
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Figure 9: The Architecture of the System 

The observer sensor is another PUMA 560 on which 
a camera is mounted. The low level visual feature ac­
quisition is performed on the MaxVideo pipelined video 
processor at frame rate. In particular, there are two sep­
arate paths from the vision sensor. One path is for the 
computation of the hand 3-D position and orientation 
and this is done through the MaxVideo. The other path 
(the inner loop) is done on a SparcStation, in which the 
image processing modules resides, those modules com­
pute 2-D cues from the scene under observation. Iden­
tification of objects, their location with respect to the 
hand and establishing contact, and correlation proce­
dures are all performed within the inner loop. The 2-D 
to 3-D conversion and probability computations are per­
formed on another SparcStation. Thus future modifica­
tions and enhancements could be coded and executed 
in a simple and modular fashion. Enhanced Low-level 
~odules for segmentation and 2-D understanding of the 
Image and to accommodate different kinds of objects in 
the scene could be coded within the inner-loop computer 
module. 

A number of experiments were performed with the 
lord gripper doing different manipulating action an a 
set of different objects. Tracking is performed for some 
features on the gripper, using the MaxVideo system. 
The visual tracking system works in real time. The 2-D 
uncertainty levels were tested. Feature extraction with 
uncertainty is performed using different noise levels, the 
enclosing "envelopes" were determined for the mechan­
ical system, the rejection algorithms are completed and 
utilized. The refined and recovered 3-D CDF distribu­
tion of uncertainties were then recovered. 

Some snap shots depicting the observer view within . ' an exp.enment that involves grasping and lifting is 
~how~ m. figure ~O. The the corresponding uncertainty 
m asslgnmg motIOn and structure values, based on the 
CDF distribution of the recovered parameters is recov-



Hand and Objects in Scene 
Probability = 0.957878 

Hand enclosing an Object 
Probability = 0.926735 

Hand is lifting an Object 
Probability = 0.918423 

Hand enclosing an Object 
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Hand enclosing an Object 
Probability = 0.994327 

Hand is lifting an Object 
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Figure 10: A Manipulation Sequence (Observer View) 



ered and displayed. 

6 Conclusions 

We have described methods to recover the parameters 
of a scene under observation from sense data with un­
certainty. We believe that the approach provides for a 
sensing strategy that utilizes knowledge about the sen­
sor errors, the sensory processing uncertainty, and the 
physical features of the scene under observation. The 
presented techniques allow the robust recovery of the 
observed environment. 
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