A General Review, Graphical Environment,
and Applications for Discrete Event and Hybrid Systems
in Robotics and Automation.

Tarek M. Sobh, Mohamed Dekhil, Peter-Pike Sloan, and Jonathan Owen!
UUCS-94-031

Department of Computer Science
University of Utah
Salt Lake City, UT 84112 USA

November 15, 1994

Abstract

In this report we present a review for the development of a theory for analyzing and pre
dicting the behavior of discrete event systems (DES). Discrete Event Dynamic Systems (DEDS)
are dynamic systems in which state transitions are caused by internal, discrete events in the sys-
tem. DEDS are attracting considerable interests, current applications are found in manufacturing
systems, communications and air traffic systems, robotics, autonomous systems, and artificial
intelligence.

We also present an overview for the development of a graphical environment for simulat-
ing, analyzing, synthesizing, monitoring, and controlling complex discrete event and hybrid sys-
tems within the robotics, automation, and intelligent system domain. We start by presenting an
overview of discrete event and hybrid systems, and then discuss the proposed framework. We also
present two applications within the robotics and automation domain for such complex systems.
The first is for formulating an observer [or manipulating agents, and the second is for designing
sensing strategies for the inspection of machine parts,

"This work was supported in part by NSF grant CDA 9024721, and a University of Utah Research Committes
grant. All opinions, findings, conclusions or recommendations expressed in this document are those of the author
and do not necessarily reflect the views of the sponsoring agencies.

Contents

10

11

Introduction 7
DES General Review 7
2] SiubebIder : s i v s N LI NES IO AP A EE G P L EE G R YN R g A 8
2.2 How to Obtain the Complete Reference List 12
23 Soctiol CondluBIan oo s 5 % s w5 = 15t 6 6 % %7 @ o & 7S B & EI6T #E % W & 8 G W B G @Te 13
Hybrid and Discrete Event Systems 13
Discrete Event Models 15
4.1 Ewvdluation of DEDSMadelas: s v e in @i s amisd D 28 % 2 i fa% s ol 15
Untimed Automata 17
5.1 Formalization and Notalions 0 v 0 i v i i b e v e e e e e e e e e e e 17
5.2 Related I8sUes o e e e e e e e e e e e e e e e e e 18
Timed Models 19
61 Timed AUIomMal® « i s v s G v s 4 M EF I S s T 28 & G w s o 0 8 5 e o 3 W% 19
6.2 Temporal ANGaNHaa] o =« v o 2 5 @ o e e 3 W G S E % D E AN @ e s R s 20
Stochastic Timed Automata 25
Petri Nets 26
K. Continuous Petri Nets 0 i e e e s e e e s e e et et e e e as 27
82 Colored Pt Nets: c v s s 8 0 v 5 VM E s NA T AN G W G TR M EF R o BNl i 5 &S 28
The Dynamic Recursive Context for Finite State Machines 28
Finite Recursive Process Models 30
10.1 Definitions and Notations o v v v v v v v e s e e bt et e e e e e e e 30
10.2 Formalization of FRP L o e e e e e e e e e e e e e e e e e 33
Performance evaluation via perturbation analysis 38
[1.1 Infinitesimal Perturbation Analysis (IPA)o 36

11:1.1 An Unperturbed Experimento v v vu o vomme s amamean 37

11.1.2 Porforming the IPA. o o v v v v v e ovm o % % ar o o 0 iy 6t v e 6 o a0 @ 06 s &1 % 6 33 38
L1127 IPAGROYr W GG L SYREBIN, « o) a & = s s m v @ o 8 5 o8 o 2 5 B w0y 2w N KGR & S D 42

11.2.1 Sensitivity Analysis for Random Parameters.\ 43

11.2.2 Consistency of IPA e 44
11.3 IPA for General Networks e e e e 45

11:3.1 IPA for a Simple Production Line . . .« .« v v v v v v v v oo e v v 45

11.3.2 IPA for General Networks with Finite Buffers 48

11.4 Extensions of IPA

....................................

11.4.1 Smoothed Perturbation Analysis (SPA)
11.4.2 Extended Perturbation Analysis (EPA) v .n
11.4.3 Other Perturbation Techniques o v v v v o v
11.5 Research Issues and Future Work oo i it i it it e e

12 State Space DEDS Representation
12.1 What is a discrete event dynamic system 7 e

12.2 Modeling

.....................................

12.2.1 ‘Generated Languages . : « w a0 s o 66 & &% ats 6 6 o 0o & 5 % e 6w e @ e
12:2:2 Ranpgésand LIVENeSs « = v s v 5 v 5 5 6 500 6w @ wre 4 o 10 et 91 € 50 e 8w e el B s

12.3 Stability

.....................................

1281 PraStability' . . v ovemavinmnseonec s nsmmorm g ness s

12.3.2 Stability .

.....................................

12803 ElnyaTiance , . i Lo i @A eia N iiawEs R am Iy
1234 (Pre-Stabilizability o c o s s wmosare s o m s e an s s % s 56 @6 e
12.3.5 Stabilizability and (fju)-Invariance0 00 i oo i i e

12.4 Observability . .

.....................................

124,17 'BeqUiTENOnts « oo « 5w o0 60 8 0 o s v 0w s mie s s w v 6y de o w @ e a1 w e
12.4.2 State Observability 0 o i e e e e e
12.4.3 Indistinguishability e
1244 WD Observability ¢ ot it it et s v s s m s os e s an
12.5 Output Feedback Stabilizabilityo v i v i i i i
1251 Requiretients o oo o 3 6 i o § 4 a0 i @ K 2 § 5 W@ w0et @ E le T & T T GE s B T # 6
12.5.2 Strong Output Stabilizability :. o0y

12.6 Invertibility . . .

.....................................

12651 RegiitBiieiiE « oo v o v 0 mor 5 5 5 101 a1 w 0w 900 & 3 m et m T e 0 X WKW 9T % D e W e
12.6.2 WD-Invertibility o e e e e e e e e e e e e e

12.6.3 Ambiguity

and Non-Invertible DEDS 0 0 v v i s s e e e e e w s

12.7 Discussion and Future Work 0 0 et e e e e e e e e e

13 Proposed Model

14 Discrete Event Observation Under Uncertainty
14.1 Hybrid and Discrete Event Dynamic Systems for Robotic Observation
14.1.1 Discrete event dynamic systems for active visual sensing
14.1.2 DEDS for Madeling Observers 0 o i v e it e e
14.2 State Modeling and Observer Construction
14.2:1 StateSpaceModeling « s v voiscwiiinvosuvsswnisae 65
14,22 ‘Ball8ing ChaModal « o % v v o ers 59 W W 0 6 a0 b6 6 B W s W G0 g B
14.2:3 Developiig the Observer - . « vos v sa weis s w s aa s s o ae e & 5%

14.2.4 Examples

.....................................

51
51
52
54
H4
54
55
a6
a6
56
57
A8
59
a9
61
61
63
63
63
65
65
65
67
68

88

73

70

8

14,3 1dentifyifig Motion' EVeItE < o i s cnsnsrman e e o emaw e e s e e a5 e
14.4 Modeling and Recovering 3-D Uncertainties
14.5 Utilizing the Discrete Event OBSErverv v v v in e v oo
126 EXPOrHMentBi.: « 5 x5 56 @ & 5 % oo 6 o im0 5 De ey B K ¥ 0 E B 4 8 0 W 6 D800 W e 583 b
14,7 COTCIURIONE 0. o 0 20 con 5w 2 o0 0 0 & cexe 0 10 1 306 8 % 3¢ 287 5 % 08 2% % = & SMEE 818 12 485 B w1 A9k B

15 Sensing for Inspection of Machine Parts
15.1 Modeling and Constructing an Observer
15.2 EXPeriments . . . « oo s 54 o5 0 e v v maionmenan e v e s e e ne e e e e
15.2.1 Experimental results, Automated Bracket Inspection
15.2.2 Experimental Results, Cover Plate .,

16 Conclusions

List of Figures

20
2]
22

23
24
25

26
27
28

29
30
31
32
33
34
35
36

Different Models for DEDS A PP AR N AR AT T o R e e
A Simple finitestatemachine. <o e v s i v s i
Sample Pathof a DESwith E={a} +v:c:acnnmoismasamasanyys
Connecting two temporal automata. 000000
A-simple’Patriifatmodel: < < v v v o s v w @ s mom s s e s 6 e v G &
ASIMPEDRISBM o 5 5 a0 o 55 s a0 5 0 o w2 w56 30 8 e el 8 K e Kb Te e 58 6
Flat Representation of a Simple DRFSM
Link in a communication network.o e e e
Time evolution of the experiment.
Perturbations in the sample path forcasei.
Perturbations in the sample path forcaseii.
A Simple Production Ling: . scsavasarmvanaie sna o a6 5% o @ % e s
Nominal sample path for the production line.
Perturbations in the sample path for the production line.
Markovian SLale Space SEqUENCES. . . . v v v v v v v v v v e e h e e e e e e
A Simple Example for DEDS.
A Resource User Example. 0 0 0 it e e e e e e e e
Stability Bxample: ¢ sc i csia cdinésisvnssmessis S 0450454 ys
Example for the notion of Pre-Stabilizability.
READbIFABHIEY BERAMPIO.: wiv: 5 < 55 v ot % 5w s @ b8 il 5 5 1s Ted W S8 G B & W R @ % R e R A
{En)-Invanance BXEMPIE. o o « x o v 55 @i s a0 w0 s e e w s s B e G e 8w s 0 R
Notion of Observability: The state is known perfectly only at the indicated instants.

Ambiguity may develop between these but is resolved in a bounded number of steps.

A Simple DEDS automaton. L L L e e e e e e e e e e e
Observer for the simple DEDS automaton.
Observability with a Delay: The state, a finite number of transitions into the past,

is known perfectly at intermittent (but not necessarily fixed) points in time. .
Exariple for WD/Obsatvabilitic w s aminv e s m v e s s e oo s % g e s @ o s
Example for Strong Output Stability (all the events are observable).
Invertibility with a Delay: Given the output sequence, the event sequence is recon-

structed exactly but with some delay. The ambiguity at the end of the reconstructed

string will be resolved using future observations.
Example for WD-Invertibility: State 0 is the initial state,
Example for an Ambiguous System.

Example for an Unambiguous but not Invertible System: State 0 is the initial state.

A stochastically timed FSM window during analysis, .
A snap shot of the FSM environment0 it i i it v o n ..
The proposed three time zones for a timed Petrinet.
A snap shol of Lthe Petri-nel environmento o0 v v v v h v e o

A Simple FSM . L . L e e e e e e e e e

39
40
45
46
47
50

nd

h9
60
60

62
62
64

66
66
67
68

70

37 A Modelfor A Grasping TaBE . . . v o ¢ v v v v v v s oo v s amisinsias e 79

38 An Observer for the Grasping System, K1
39 Different Views of the Lord Gripper iy 82
40 A Grasping Task : As seen by the observer’scamera 82
41 A Model for a Simple Visual Sequence 83
42 3-D Formulation for Stationary Scene/Moving Viewer 84
43 Cumulative Density Functions of the Translational Velocity 85
44 Obsorver Stateand View (1) « o v v s cnwvos wnsomiosnas ommrmpess R7
45 Observer State and View (2) o o v v v i i e e e e e e e e 8%
46 Closed loop system for reverse engineering v v v vt v o oo 90
47 Inspection System OVEIVIEW o v v v v v v v v v v v s e e e e 91
48 Inspection Environment Window oo oo i i i e e e e 92
40 Experimental SebUp: = v v s qmam g §r s 8 n e 5wy e 6 R e # e s ST 6 93
50 Original and Reverse-Engineered part models 94
51 |Original and FAprodRECION < oo 5 0m @ 0w e 0 5 e 8 5w e 6 W e & e 6 e (e 94
52 DBrocketSoqience . .« o a5« o s s 0w s e e 8 5w w 5w @ R 8w 8 e e e s s s 95
53 Original and Vision-Reverse Engineered Models 96
54 Original and Vision-Reverse Engineered Parts 97
55 Cover Sequence« s34 ¥ o e/reis e nbealeveia s ssaiesdei 98

List of Tables

1 State transition function.ttt i e e e e e e e e e e e e e e e e 17
2 An example of causal function. e e e 21

6

1 Introduction

The underlying mathematical representation of complex computer-controlled systems is still in-
sufficient to create a set of models which accurately captures the dynamics of the systems over the
entire range of system operation. We remain in a situation where we must tradeoff the accuracy of
our models with the manageability of the models. Closed-form solutions of mathematical models
are almost exclusively limited to linear system models. Computer simulation of nonlinear and
discrete-event models provide a means for off-line design of control systems. Guarantees of system
performance are limited to those regions where the robustness conditions apply. These conditions
may not apply during startup and shutdown or during periods of anomalous operation.

Recently, attempts have been made to model low and high-level system changes in automated
and semi-automatic systems as discrete event dynamic systems (DEDS). Several attempts to im-
prove the modeling capabilities are focused on mapping the continuous world into a discrete one.
However, repeated results are available which indicate that large interactive systems evolve into
states where minor events can lead to a catastrophe. Discrete event systems (DES) have been
used in many domains to model and control system state changes within a process. Some of the
domains include: Manufacturing, Robotics, Autonomous Agent Modeling, Control Theory, As-
sembly and Planning, Concurrency Control, Distributed Systems, Hierarchical Control, Highway
Traffic Control, Autonomous Observation Under Uncertainty, Operating Systems, Communica-
tion Protocols, Real-Time Systems, Scheduling, and Simulation.

A number of tools and modeling techniques are being used to model and control discrete
event systems in the above domains. Some of the modeling strategies include: Timed, untimed
and stochastic Petri Nets and State Automata, Markovian, Stochastic, and Perturbation models,
State Machines, Hierarchical State Machines, Hybrid Systems Modeling, Probabilistic Modeling
(Uncertainty Recovery and Representation), Queuing Theory, and Recursive Functions.

The focus of this report will be to review the DES literature and some techniques used in the
DEDS field, present a new framework for hybrid DES controllers and modelers, and discuss two
application problems within the robotics and automation domain for which discrete event and
hybrid systems play a significant role in the solution.

2 DES General Review

This section contains a description of a fairly complete and detailed bibliography of published
books, journal, transaction, and conference papers, technical reports and other research publica-
tlions related to the Discrete Event Dynamic Systems (DEDS) area.

The main objective of the section is to provide researchers with a comprehensive list of research
in DEDS. Moreover, this section may serve, we hope, as a “look—up table” for literature review
purposes, as well as to support the interested researcher in pursuing his/her interest in DEDS
and /or in trying to identify new research topics.

The list of references has been divided into subject-indexed areas. Survey and/or general
papers may have been listed in more than one subject areas, according to their specific content, All

-1

Petri Net related publications, as applied to CIM, FMS and in general automated manufacturing
systems, have been listed separately, mainly due to the fact that Petri Net related research is a
rapidly evolving and expanding area. '

Each subject—indexed references represent the state-of-the-art developments in the pertinent
area. The authors believe that any finer area distinction will not serve a better purpose. This is
left to the individual reader.

Due to the obvious space limitations, only selective references are listed in each of the subject
area. The complete list of approximately 1,600 references is available to every reader from the
ftp-site which contains the complete BIBTEX file. Instructions related Lo how Lo access this file
are given in Section 3.

It is very important to emphasize that a comprehensive list of written books is included in this
section, while the representative 170 references, explicitly sited at the end of the section, represent
only a “flavor” of the voluminous work reported in the literature and is by no means complete.

To facilitate reading the section, brief descriptions of reported work are presented in each
subject-indexed section.

Finally, this work is part of the Discrete Event Systems Technical Activity Committee of the
IEEE Robotics and Automation Society. The Committee’s goal is to provide an annual, updated
comprehensive list of references in DEDS, thus creating a dynamic database available Lo everyone
through the ftp-site.

2.1 Subject Index

For each subject—index area a short description and several representative references are given.

A List of Representative Books

Good understanding of the DEDS area requires a knowledge of different topics, like control theory,
probability, operation research, etc. Several books which provide a good introduction and a
coverage of some advanced topics are listed in the sequel: [8], [9], [10], [17], [20], [23], [24], [25],
[22], [27], [28], [29], [32], [30], [33], [35], [44], [54], [57], [58], [59], [61], (62], [64], [68], [71], [73], [74]
(78], [80], [83], [85], [91], [96], [94], [9%], [106], [108], [111], [112], [113], [114], [116], [119], [122],
[127], [138], [140], [150], [147], [149], [153], [163], [165], [166], [167], [169], [170], [171], [173], [192],
(199], [203], [208], [216], [222].

Algorithms

This subject includes description of various algorithms applied to DEDS problems, as well as the
theory of algorithms in general. Most of these algorithms are related to the problems of scheduling,
perturbation analysis, control and quenes. Their definitions and a representative reference follows:

Scheduling: a sequence of actions is generated to achieve a desired goal [176],

Perturbation analysis: a system is analyzed by introducing a small change in the system pa-
rameters (perturbation) [95],

Control: selecting proper actions to achieve desired system behavior [191], and,

Queues: study of the stochastic nature of a system [81].

Applications

Various theoretical models (Petri Nets, stochastic, perturbation) are applied to particular prob-
lems like flexible manufacturing systems [5], resource sharing [45], transportation [143], real-time
systems [207], etc. The models are used for analysis, synthesis, control and performance evaluation
of a wide variety of DEDS.

Assembly

The assembly related references are divided into two main categories:

Plan generation: related to how to generate a sequence of actions or to schedule tasks to achieve
desired functioning of the system [38],[209],[219], and,

Error recovery: related Lo how Lo recover from errors during the execution of a plan [110],[135].

A recently developed approach is based on the concept of “reverse assembly”, widely referenced

in recent studies.

Automation

This subject is closely related Lo assembly becanse the solution process for the problems of the
plan generation and the error recovery involves automatization and generalization, i.e., for a given
class of assembly processes a more or less general model (Petri Nets, hierarchical control) is used
to automatically create plans and/or error recovery procedures. Representative references include

[4], [16], [219], [221].

Concurrency

Concurrency includes coordination, control and error recovery of a set of concurrently competing
processes. Real-time constraints, temporal semantics, resource sharing are some of the problems
to be solved. Analysis, performance evaluation and verification of concurrent systems provide a
way to measure the quality of the control process. Concurrency is not limited to the assembly
and manufacturing systems, but it is also used in databases, distributed systems, protocols, etc.
[120], [140], [155], [204].

Control

Varions theoretical and practical aspects of the control of DEDS, like stability, robustness, con-
trollability, etec. have been explored. This subject has the most references, due to the fact that
the control is crucial to the system theory and therefore to DEDS [33], [61], [86], [116], [132],
[139], [157], [213].

Hierarchical Control

Hierarchical control utilizes the structure of hierarchical, multilevel systems, and provides a more
efficient way to control automated manufacturing systems by studying parts of the system al
different level of abstraction, detail, and organizing the sequence of tasks to be executed in a
hierarchical way [55], [92], [151], [217], [220].

Manufacturing

Manufacturing overlaps heavily with scheduling, automation and robotics. Various theoretical re-
sults are applied to this specific class of applications, e.g. design, analysis, performance evaluation,
etc. [4], [42], [70], [97], [119], [162], [177], [206].

Markov Chains

The memoryless property of many real-time DEDS processes enables the application of Markov
chains as a powerful tool for analysis. Various simulations, numerical methods, sensitivity analysis
are applied Lo determine properties of the modeled DEDS [111], [166], [193], [211], [218].

Observers

As a part of sensitivity analysis and constructibility, observability is an important property of any
DEDS. Observability is considered both during the design and implementation phase of a system
[131], [158], [186], [202].

Operations Research

Methods of operation research are integrated with the system theory to provide solutions for
problems like queuing networks, scheduling, etc. [2], [82], [88].

Perturbation Systems

Research reported in this area follows theoretical developments in perturbation analysis [41], [51],
(78], [90], [185], [205].

Petri Nets

Petri Nel models are extensively used in the modeling of DEDS. This includes ordinary Petri
Nets, restricted Petiri Nets, timed Petri Nets and high-level Petri Nets models. They provide a
model for a very general DEDS. Properties of Petri Nets are used to determine or verify properties
of the modeled system. Petri Nets and their modifications provide a very powerful mathematical
and graphical tool for the study and evaluation of a wide class of systems. [1], [57], [66], [106],
(107], [142], [222].

10

such extended state machine is used for system specification and modeling [31], [144], [215].

State Space

The state of the system at a time instant ! represents a (measurable) behavior of the system.
The set of all possible values that the state may take, the state space, is in general case very
large. Problems of estimating the state-space size and developing new approaches to reduce the
state-space or to deal with its complexity are described here [75], [145], [210].

Supervisors

Supervisors and supervisory controls refer to the form of control which involves enabling/disabling
actions in a system. Such a control involves predictability, lookahead policies, languages generated
by the control process, modularity, Petri Nets models, ete. [133], [160], [196], [201].

Survey Papers

Although, to the best of our knowledge, there is no survey paper which covers whole DEDS
area, there are several survey papers covering some of the subjects. That includes Petri Nets,
perturbation analysis, control architectures, scheduling theory, queuing networks, etc. [3], [19],
(37], [60], [63], [65], [67], [89], [104], [109], [123], [124], [126], [136], [137], [154], [156], [178].

Theory

A good knowledge of topics related to the DEDS area, like control theory, probability, etc., require
a good knowledge of the related theory. This is especially true for the system theory (control,
hierarchical control, observers, supervisors), probability (Markov chains, queues, simulation), au-
tomata theory, etc. Selected papers and books provide a good introduction and as well as a
coverage of advance level topics [34], [98], [138], [148], [153], [175].

2.2 How to Obtain the Complete Reference List

All references listed here can be reached by using ftp. The ftp-site is swamp.cacs.usl.edu and
the references are stored in the directory pub/deds in the file deds.bib (BIBTEX format). In
addition, for each subsection in Section 2, there are three related files which contain selected
references, one in the BIBTEX format, one in the Postscript format, and one containing \cite
commands Lo be used Ltogether with deds.bib. Reference which don’t fit well in a single category
are also listed. The README file contains information about all bibliography related files and

how to use them.
An example of the ftp-session follows:

% ftp swamp,cacs.usl.edu

Connected to swamp.cacs.usl.edu.

220 swamp.cacs.usl.edu FTP server ...
Name (swamp.cacs:user): anonymous

12

331 Guest login ok, send ident as password.
Password:

230 Guest login ok, access restrictions apply.
ftp> cd pub/deds

250 CWD command successful.

ftp> get deds.bib

200 PORT command successful.

150 ASCII data connection for deds.bib ...
226 ASCII Transfer complete.

local: deds.bib remote: deds.bib

386377 bytes received ...

ftp> quit

221 Goodbye

If only a particular topic is needed, e.g., Petri Nets, selected references can be retrieved by
getting following files:

petri.bib A list of selected references in the BiBTEX format,

petri.ps A list of selected references in the Postscript format,

petri.cite A list of indexes of selected references (nocite commands), and,
petri.tex A IXTEX file used Lo generate petri.ps.

Therefore, for any of the subject areas, the related files are area.bib, area.ps, and area.cite.

2.3 Section Conclusion

The major objective of this subject-indexed bibliography section has been to summarize and
group most research publications in the area of DEDS. As a result of this effort, it is believed
that, through this extensive list, the present research directions related to several issnes (modeling,
synthesis, analysis, control, simulation, performance evaluation) of DEDS, will become more
evident and clear. The reader will be able to isolated the most promising techniques related to
the study of a specific aspect of an automated manufacturing system, or even define new directions
in research.

The authors’ wish is to serve continuously the professional community by providing on an
annual basis an updated list of references, thus keeping track of current research and developments
in this area.

3 Hybrid and Discrete Event Systems

Discrete event dynamic systems {(DEDS) are dynamic systems in which state transitions are
triggered by the occurrence of discrete events in the system. DEDS are suitable for representing
hybrid systems which contains one or more of the following characteristics:

13

e continuous damain,
e discrete domain,
e chaotic behavior, and

e symbolic parameters,
Some examples of DEDS are:

Data Network: A = {send, receive, timeout, lost}
Shop with k jobs: A = {admil_job, job_finished}

Electric Distribution: A = {nermal, short_circuit, over current}

There are several frameworks can be used to model DEDS such as: finite automata, petri nets,
Markov chains, etc. Choosing one of these frameworks depends on the nature of the problem being
modeled and the implementation techniques available to implement this model. We will show some

criteria for evaluating any framework.

DEDS has been applied to model many real-time problems and has been involved in different
types ol applications. Some of these applications are:

e Networks

e Manufacturing (sensing, inspection, and assembly)
¢ Economy

e Robotics (cooperating agents)

Highway traffic control

e Operating systems

For more details about the DEDS applications see [18, 15, 87, 143, 187, 186, 184, 189, 188].
We believe that DEDS will have an important role in the development and improvement of many
other applications in different disciplines.

In the following sections, we will investigate some of the different frameworks used to represent
a DEDS model and the mathematical background and the notations used for each.

14

4 Discrete Event Models

As mentioned before, there are several representations and frameworks used in DEDS modeling,.
This section and the next eight sections are collected from various sources (papers and books) by
different authors for the purpose of reviewing the DES area. Some of these frameworks are:

e Automata (untimed, timed, temporal, stochastic).

e Pushdown automata, u-recursive, and Turing machines.

Petrinets (timed, untimed).

Markov chains.

Quening theory.

e Min-Max Algebra.

Uncertainty modeling.

¢ Classical control.
These frameworks can be categorized in three different domains:

Timed vs. untimed models: the untimed models emphasize on the “state-event sequence” of
a DEDS and ignores the holding time of each state, while the timed models, “time” is an
essential part of the model.

Deterministic vs. probabilistic models: deterministic models assumes pre-knowledge of the
sequence of events that will occur at any time, while probabilistic (stochastic) models asso-
ciates probabilities with each event.

Computational model: which can be logical models in which the primarily questions are of
qualitative or logical nature, while algebraic models can capture the description of the tra-
jectories in terms of a finite set of algebraic operations. Finally, perforrnance models are
formed in terms of continuous variahbles such as average throughput, waiting time, etc.

Figure 1 shows the different models of representing DEDS and its characteristics. More about

DEDS models can be found in [94].

4.1 Evaluation of DEDS Models

The evaluation of each frameworks can be done in four dimensions:

e Descriptive power

— Language complexity

15

Timed Untimed
_ Temporal Logic Finite State Machines
Logical Timed Petri Nets Petri Nets
) Finitely Recursive Proc.
Algebraic Min-Max Algebra
Comm. Sequential Proc.,
Markov Chains
Queneing Networks
Performince GSMP/Simulation
Stochastic Petri Nets

Stochastic —s=feg— Nonstochastic

Figure 1: Different Models for DEDS

— Algebraic complexity
e [mplementation
e Performance evaluation

— Logical correctness

— real-time requirements
e Applications

Language complezity is based on the formal theory of languages. Fach FSM generates a
language L which is all possible traces of this FSM.

L(FSM) C L(Petrinets)

So, petri nets is maore language complexr than FSM.

Algebraic complezity is based on the systems theory. We can consider any algebraic system as
a set of models and a set of operators that map one or more model to another. For example, In
transfer lunctions, addition and multiplication reflect serial and parallel systems.

Logical correctness is a desirable property of the traces generated by any DEDS model the
DES. For example, in the data network example, we must guarantee that each transmitted packet
lias been received correctly to the receiver.

Real-time requirements is a desirable property of the real-time response of the actual system.
It is necessary to embed the DEDS model in a real-time environment.

16

5 Untimed Automata

In untimed models for DEDS, we only consider the sequence of state visited given a certain
sequence of events. We don’t consider when a state was visited or how long we stayed in a
particular state. There are two main classes of untimed models, state automata and Petri nets. In
this section we will consider state automata (in particular, finite state machines), as a framework
for DEDS, and Petri nets will be discussed in Section 8.

5.1 Formalization and Notations

The DEDS model using finite state machine (FSM) is in the form:

G= (XiEvrqfle)

where,

X: the finite set of states,

IZ: the finite set of possible events,

['(2): the set of feasible or enabled events.

[: is the state transition function, f: X x £ — X.

Tp: is an initial state, zy € X.

Figure 2 shows a simple FSM which can be described as:

X ={1,2,83},
E = {a.b,c,d},
(1) = {a,c},
(2) = {a,b},
M'(3) = {d},
go=1

and the state transition function [is represented by table 1.

cuent
state |a | b | b | d
1 2|={3]=
2 3| 1|=]=
3 — | =|=3

Table 1: State transition Munction.

c o
Figure 2: A Simple finite state machine,

5.2 Related Issues

There are some related issues to the use of state automata to represent DEDS models. Some of
these issues are:

e Generated Language

o Pre-stability

e Stability

e [-Invariance

e Pre-stabilizability

e Stabilizability

e Observability

e WD Observability (With Delay)
¢ Indistinguishability

More information regarding these issues can be found in [145, 44, 146].

There is also an important issue related to that topic which is outpul feedback stability in
which the goal is trying to manipulate the system’s observer. It is the stabilization of the observer
with state feedback. In this case we don’t know when the system will enter the stable set. Strong
output stabilizability in which we will know when the system will enter the stable set. A is strongly
output F-stabilizable il there exists a state feedback K for the observer O such that Oy is stable
with respect to Ey = {z € Z|z C E}.

18

6 Timed Models

In these models, time has an essential role in the representation and the question will include
when an event happened, and not just did it happen or not. There are several frameworks to
represent timed DEDS models. In this section we will discuss two of them, timed automata and

temporal aulomnata.

6.1 Timed Automata

In timed models for DEDS, the sequence ol events is represented by a set of pairs of event and
time. State sequence will be defined as:

{(zo,to), (z1,11),...))
where t, denotes the time when z; occurs (given t;).

At time t1—; event e is said to be active. The lifetime of an event e is:
VK =g — b=

A clock is set to v at time ti—; and starts ticking down till 0 (the lifetime expires for event
ei), then the event e, occurs. Active and oceur are equivalent to enable and fire in Petri nets.

For tp_y <t < t,

Yk =1 —1

Zp =1 —1k-y

A sample path is specified by the lifetime sequence (Vy, Vy,...).

The clock structure is a set associated with an event set E and is defined as:
V={v:ie E}
where,
vi= {1, v}

The clock structure will be the input to the DEDS machine to drive the state antomata. To
determine the next event we will use the lunction:

Ckgt = her, v1,vg,...)
The timed state automaton Model will be:

M = (E,X,I",LIO, V]!

where,

19

e, =0 e,=0 o i e, =

»
' o
F
"

-

—
(=1
-
-
—
[
==y

Yi -

— --------.1
™~
-

Event lifetime f

Figure 3: Sample Path of a DES with £ = {a)

FE: a countable event set.

X: a countable state space.

I'(z): a set of feasible events for all z € X with I'(z) C F.

[: a state transition function, f : X x ' — X defined only for e € I'(z) when the state is z.
2o: the initial state, zg € X .

V: the clock structure.

Figure 3 shows an example of this formalism of timed automata where,

E = {a},
I'z) = {a} forall z € X.

6.2 Temporal Automata

This is another timed model for DEDS. There are several distinctions of this model over the timed
automata, such as:

e The environment is as important as the computing element.
e Composition and Decomposition of machines
e Machine hierarchy

o Representation of the duration of computation

First we will introduce some definitions and terminologies.

20

Time structure: a time structure is a set T C R* such that,
0T and,

forallt € RY,sup{z € T|z <t} eT

This means T' is closed on its right.

Entities: an entity is a pair (7', D) where T is a time structure and D is a domain. So the entity
can take set of states, sel. of events, sel of inputs, or set of outputs.

Trace of an entity: trace of an entity is the values assigned to that entity over time. It is a
function v : T — D defined only on the time structure of the entity. The set of all
functions 7' — D will be denoted V..

Continuous time extension: sometimes we need at time t to know the last value taken by an
entity. This requires the identification of the latest time of T' which precedes ¢ The conlinuous
time extension of a trace v of the entity ¢ = (T, D) is the function v : RY — D defined
by:

v(t) = v(sup{z € T|z < t})

Ilft € T (the time structure of €) then 6(t) = v(t), otherwise the value of v is the last value
(in time) of v.

Causal functions: an entity e can be a function of other entities, as shown in table 2 The output
can depend at time { on all the inputs from 0 to . A causal function is a function f from
the set of functions V; over a set of entities / = {i;,13,...} to V., and if we take two traces
for e where e takes different values at time t then the input must differ at some time before
1

mput
state | o | A | v
A 111[0
B 01111
C 1]1]0
D 0]1]0

Table 2: An example of causal function.

Transductions: il is a tuple (e, 71,8, finit, f) where

e: is an entity (7., D,),

/: is a sel of entities,

21

8: is a nonnegative real,
finit: 18 a function from T, N[0,4) to D,,
J: is a function from [[;c, D; to D,

It defines a function F from [],c; Vi to Ve :

- _) Jinie(2) Vi €Tt <6
Bl tha <ol = { fva(t—6),va(t—46),..) VteT|t>4

Causal systems: a causal system is a tuple (1,0, f) where,

I is a set of input entities,
() is a set of output entities, and

f is a causal function from [T,y Vi to [T.eo Vo-

The value of the entity ¢ at time t € T, is vi(t) if e = ¢ € I and fy(viy, w2, ...)(¢) if
g = o€ Q-

Temporal aulomata is a more specific form of causal systems.

Also, there are some important notes before we start with the formal definition of temporal

alitomala.

finit defines the value of the entity before the entity has performed its first calculation.
If 4 = 0 then no need for fi,;.
if T.N[0,4d) = {0} then we need only fi,i(0).

The function 9;(f) is a continnous function while v;(t) may not be continuous. This means
that an entity doesn't have to wait for an input to happen at the input entity time structure,
but it can take the last value of the input at any time (i.e no synchronization required.)

As a convention we will say a transduction (e, 7, 4§, Fin, f)isfrom [toe, and if 6 > 0
then we call it durational transduction,

A transduction (e, I, 8, finit, f) where either e & [or§ # 0 defines a causal function from
[Ties Vi to Vi

To illustrate some of these notations and definitions, we will show an example of a time-out
clock. The clock keeps track of the time elapsed since the emission of a signal. The value of the
clock is zero until it is activated, and from then on it increases in increments of ¢, the clock grain

size,

22

We will define the function f as follows:

0 if elock = 0 and start = 0
clock + ¢ otherwise

f(start, clock) = {

We have a clock entity elock = (N, R) , where N, = {k + ¢,k € N}, and the transduction
(clock, {start, clock}, ¢, (0,0), f) When the entity start emits the signal, then the entity clock and
the transduction will implement a clock giving the amount of time elapsed since the emission of
the signal with a precision of ¢. We will have:

Vetock (k ¥ €) = [(Dstart((k = 1) *€), vaoek (K — 1) % €)).

According to the definition of f, as soon as 1, becomes 1, v, will start to increase by
¢ every ¢ seconds. Then in every history the value of the entity clock can be used to implement
time-out or other time-dependent behavior.

A temporal automaton is a tuple (1, 5,0, T) where,

I is a set of input entities,

S is a set of internal (states) entities,

O is a set of output entities,

T is a set of transductions with the following properties:

Ye € SUO, T has a unique transduction to e and this transduction is from a set included in
Js

Ve € S|JO, A(e) is finite and e & A%(e), where A(e) is the set of entities that e depends on.

Any deterministic one-tape Turing machine can be simulated by a temporal automata.

In this framework a complicated system can be modeled as the composition of several mod-
ules, each module is represented by a temporal automata. The interaction between them are
represented by the notion of a connection. the connection can be viewed as the wiring of the
output of a machine to the input of another machine (see Figure 4).

A connection from one entity €, to an entity €; is denoted by €y > €3 or €3 9ey and is a causal
function f from V) to V; which associates to vy € Vy, vy = f(vy) defined by Vi € Ty, va(t) = vy (1).

From this definition the time structure of € and e, need not be equal (a connection does not
imply synchronization.)

As an example of using temporal automata to model DEDS, let’s consider modeling a mobile
robot as follows:

A machine M will be used to implement the robot behavior “move forward in the middle of
the corridor”. This robot has two sensors modeled by the two machines Mi_ onar and Me_sonar-
Assume the same time structure for the three machines which is: N; = {k+ 4,k € N} where
4 = 50 milliseconds.

23

Figure 4: Connecting two temporal automata.

The sonar is very simple, with one input entity measure with domain (0, 1) and one output en-
tity distance with domain € R*. The transduction to distance is (distance, {measure}, d, (0,0), f)
with f(measure) = if measure = 1 then function-sonar() else 0.

The robot M has three inputs dj. d, from the sensors and 7 is the order dived to the robot.
The domains of Lhe inputs are:
Dy, = Dy, = R*
D; = {move, stop)

The robot M has three outputs m, oy, o, which are, order to the motor, order to the lelt sonar,
and order to the right sonar. with the domains:

Do, = D,, = {0,1},

Dy, = { forward, backward, lec ft, right, stay}

The transduction to o is (e, {1}, 46, (0,0),9)

The transduction to o, is (o, {1}, 6, (0,0),9)

The transduction to m is (m,{i,d;, d.}, 4, (0,0),h)

where,

g(1) = ifi = movethenlelsel, and

stay if 1 = stop

(i o) = left if i =move and d; — d, > A
forward if i = move and —A <d)-d, <A
right if i = move and d) — d, < —A

with A = 20 centimelers.

The wiring:

24

W = {0, b measure, _,ouar, 0 b MEASUTE|_sonar, AISLANCE, _sonar P dy, distance|_sonqr b d;)

over M, Mi—sonar, and M, _,onar induce a temporal automaton (see [121]).

7 Stochastic Timed Automata

The stochastic clock structure associated with an event set F is a set of distribution functions:
G={G;:1€ E}
The stochastic clock sequence will be:

{Via) = Vi, Viay - 1 i€E,
Vik € Rt k=1,2,...

Fach event 1 € E has a distribution function denoted by G, which describes the random clock
sequence V; x

We will assume that the clock sequences are independent of each other. The distribution
function is defined as:

Gi= P[V; < 1]
There are two types of uncertainties:

e Stochastic clock structure.

e The initial state is a random variable with the pdf:

Po(z) = P[Xo = 2], zeX

e The transition function is also probabilistically specified with the transition probability:
pl#;2,6) = P[X = #|X =z,E = ¢

where 2,z € X, é € I
Note that if ¢ ¢ ['(z), then
p(#;z,é) =0

A stochastic timed automata will be defined as a six tuple:
(E,X,T,p,po, G)

where,

F 15 a countable event set

25

X is a countable state space

I'(z): is a set of feasible or enabled events, defined for all z € X
p(#; x, €): is a state transition probability

polz): is the pdf P[X, =]

G = {G, : i € E}: is a stochastic clock structure.

8 Petri Nets

A formal definition of a Petri net is as follows:

PN = (AT, A W)

o P={p1,ps,ps,.--,Pn}

o T=1{ty,t2,t3,...,tm}

o A= A, U Ay with
— A,y set of elements from {P x T'}
— Ayt sel of elements from {T x P}

e W = a weight function, w: A — {1,2,3,...}

P is a set of places, T' a set of transitions, A a set of directed arcs of two forms, the input
arcs, connect places to transitions, and the output arcs connect transitions to places, and W is
the weight of the ares. Graphically the places are represented by circles, the transitions by bars,
and the arcs by ares.

A marking x of a Petri Net is a function z :— P{0,1,2,...}

A marking defines a row vector & = [x(py),z(p2), ..., z(ps)], where u is the number of places
in the Petri Net.

A marked Petri Net is defined as:
PN = (P, T, A, W, z)
e where (P, T, A, W) is as above
e 1(is an initial marking
The marking elements are called tokens, and are graphically represented by dots in there place.

A transition is enabled if all its input places have a marking greater than the input arcs weight.

A Petri net is executed by the firing ol transitions. A transition may only fire if it is enabled.
When a transition fires, it removes the weight of the input arcs from there corresponding places,

26

Q I
L2
B
1e W ts
0

Figure 5: A simple Petri net model.

and adds the weight of the output arcs to there corresponding places. The number of input arcs
does not have to equal the number of output arcs, and the total number of tokens does not have
to stay constant. For our purposes the marking of a Petri net represents the current state of the
system, and the firing of a transition represents an evenl occurrence.

A timed Petri Net is a Petri net where each event has a firing delay associated with each
transition, this is the delay between the enabling and firing of the transition. Stochastic Petri
Nets, are timed Petri Nets where the delay is a random variable. The graphical representation of
this has a thin bar if there is no delay, and a thick bar with its distribution next to it if there is.
Figure 5 shows a simple Petri net model with untimed, timed, and stochastic places.

8.1 Continuous Petri Nets

The continuous petri nets (CPN) are used to model a DES systems that contains large number of
states, In C'PN the marking of a place is a real positive or null number. A maximum firing speed
is associated with each transition. When a transition is fired, a quantity r is fired where r is a
real number. So, the quantity of marks taken from or added to the places is defined by r and by
the weights of the input and output arcs.

Two types of CPN have been defined in [56, 12]: constant-speed continuous petri nets (CCPN),
and variable-speed continuous petri nets (VCPN). The CCPN is a model in which the firing speed
vector remains constant during a pre-defined functioning intervals.

A madeling tool for controlled speed continuous petri nets called CSCPN is described in [76].
Using this tool, the maximum firing speed can be controlled and thus the firing speed vector is
not constant.

L>10 e

vi<x<vz /7 N\

w > 120

7 > 3vd [sin(v5)

varmsied vi| va| va|va | vs

Levell | 12 IS | 003 170 | 25

Level2 | 10 12 | 0.07] 100 | 35

Level 3 6 8 0.15] 50 40

Figure 6: A Simple DRFSM

12<x<15 /"‘\ w120

y>0.03
A B C
1200
02<c<S &
L>10
ll'l«:x-: 12 w120 y)ubm
UZ-:ch'h 220
L>10

5(1(8 w> 120 y>(].l5

230

nz«-.ns

Figure 7: Flat Representation of a Simple DRFSM

29

10 Finite Recursive Process Models

Finite recursive processes (FRP) are a class of models suitable for systems constructed from
interacting modules of discrete events such as manufacturing systems, communication networks,
afc.

The basic characteristics of FRP are:

e The set of events can change dynamically

e Recursive equations are used to represent a process

» Termination of a process is formulated by modifying the process space

e Every Petri net can be represented as an FRP.

10.1 Definitions and Notations

To formally define a FRP, we will start by some definitions and notations. First we will have
another definition for a FSM which will be:

M = (QU!Alle}
The transition function can be defined as:

flg,()==gq

undefined, if f(q,s) or f(f(q,s),a) is undefined

flg,s(a)) := { f(f(g,s),a), otherwise.

Il f(q,s) i8 defined, then we say that M can execule the trace s from state ¢. The traces of
M is the set of all sequences that M can execute from the initial state go.

tr M := {s € A*|f(qo, s) is defined)

A synchronous composition of FSMs can be defined as follows:

Let A= A;[J Az, the sequence s 14+ (read as projection of s on A7) is defined as follows:

() Tar:=()

(s Taz)(a) if a € A;

The synchronous composition of M1, M2 is the machine M1||M2 defined as follows:

30

M1||M2:= (Q1 x Q2. A, £, (go1, 02))

(filgr,a), falga, @) if a € Aj [Ag
(filgr,a),q2) iTa € Ay ~ Ay
(q]'fﬁ(qm)) ifﬂ€A2"”A1

undefined otherwise.

fl(q1,92),0) :=

trM = {s € A%|s Tas€ trM,i = 1,2}.

Process Space [[: a deterministic process P is a triple:
P=(trP,aP,TP)
where,

e irP is the set of traces of P,

e aP(s) is the event function trP — 24, and it specifies the traces that P can execute or

block after it executes s

e 7P(s) is the termination function trP — {0,1} and it specifies whether P will terminate or

not after it execules s
Some conditions that should be satisfied by the process P
1. () etrP,
2. s5tetrP= setrP,
3. s(a) etrP = a € aP(s),
4. TP(s)=1= st ¢ trP unless t = ().
These definitions are also important for the formalization of FRP:
e Operations defined on processes are functions [T = [].

e A function f : [T — [] is continuous if for any increasing sequence of process {F;,i >
0}, f(P;) is increasing and

rJry=U s~

i>0 i>0

31

e A postprocess P/s of a process P is defined for s € trP by:

tr(P/s) := {t € A"|s’t € trP},

a(P/s)(t) := aP(s7t),
T(P/s)(t) :== 7P(s71).

e Let P 1 n denote the subprocess containing only traces of F' that have length at most n,
where n > 0.

P=|JPtn

n=>0

J:[1— [l is constructive (con) if:
f(X)tn4+1=f(XTn)tn+1.
f:T1 =TI is nondestructive (ndes) if:

f(X)tn=f(XTn)Tn

[is strictly nondestructive (sndes) if its is ndes but not con.

The transformation from a process to a FSM can be done as follows:
My = ({P/s|s € trP}, A, f, P/())
where f is defined by:

undefined otherwise.

f(PfS‘ u) — { P/[sﬂ("')) il .s"(u,) €trP

trM, = trP.

32

Theorem
X = f(X)

where f= (fi,...,fa) : [I" = I1".

For any set of initial conditions:
Xi T0=Zgiid= Tyeasyn
that is consistent, i.e.,
Zoi = filZaryee v Zon) T0i=1,...,m

This has a unique solution X € []" satisfying the initial conditions, provided the following
two conditions are fulfilled by f:

e ('1: Each f; is continuous and ndes in all its arguments.

e ("2 : f contains no sndes loop.

This enables us to define processes recursively. If we take n = 1 (scalar) then the solution will

be:

X = f2)

120

where fi) = fo f...af (i times).

10.2 Formalization of FRP

There are five operators that serve as the building blocks.

(1) Deterministic choice operator: given Ay, distinct elements aq,...,a,,in Agand 75 € 0, 1,
this operator maps (P,...,) € []" into the the process @ denoted by:

Q p— ('11 — Pll e .|aﬂ, - RI)ADUW
Example:

33

X =(a—= X|b— SKIP4))(ab}0
has a unique solution X with:
trX = {a",a"b|n > 0},
aX = {a,b},7X(a™) =0,
X (a™) = 1.
(2) Synchronous Composition: the synchronous composition of processes P, () is the process

P||Q defined as follows:

() € tr(P||Q)
if s € tr(P||Q), then s™(a) € tr(P||Q) iff
e 5°(a) 1€ trP,5°(a) 1g€ trQ
e a€aP(stp)UaQ(s 1g)

a(P||Q) ;= aP(s tr) Ual(s Tq)

[TP(stp) = 1,
and 7Q(s 1g) = l; or
o TP(s Tp) = 1,
T(PlR)(s) =1 5 and aQ(s tg) C aP(s Tp); or
Qs 1) =1,

and aP(s tp) C aQ(s Tg)

T(P||Q)(s) := 0, otherwise

(3) Sequential Composition: Sequential composition of processes P, (Q is denoted by P;Q and
intuitively, P;@Q proceeds according to P until it successfully terminates (rP(s) = 1), and
then it proceeds according to Q.

Example:

Y=(a=Y;X|d— SKIP40)

X = (b= SKIPyap)

gives
tr Y ={a"db"|n > 0}.

This trace is not regular and cannot be generated by a FSM.

34

(4,5) Local and Global Change: These two operators change the event function of the pro-

Cess,

Let B,C be subsets of A. the local change operator corresponding to B, and (' maps the
process P € [] into the process PI=B+C] defined as follows:

tr PI-B+C] .— {s € trP|b € B = b is not the first event of s}

aPEBCl(()) := {aP(()) ~ B} UC, and
aPl=B+C(5) ;= aP(s), for s # ()

7PI=B+C](5) := 7 P(s), for s € tr PI=B+C],
The corresponding global change operator maps process F into PI=B+C1l defined by:

trPI=B+Cll .= {5 ¢ trP|b € B = b is not in s}
aPI=B+Cl(5) == {aP(s) ~ B}UC
TP[I_B+CH(H] = 7P(s), for s € tr pl-B+C]]

First we define mutually recursive process as follows:

X =(Xy,...,Xy) € [T" is mutually recursive il for every i and trace s € trX,, the posiprocess
X./s has a representation

Xifs= f(Xyy.oiy X3)
X is mutually recursive iff X is the solution of the recursive equation
Y=/f(Y),YT0=X10
where each component f; of f has the form:
filX) = (g = fu(X)| .. |au (X)) 4,70

Y €[] is a finitely recursive process (FRP) il it can be represented as

X = f(X)

Y =g(X)
This is similar to the difference equation:

2(t+1) = f(2(1)).y(t) = g(z(t),t = 0,1,...

is a finite representation of the process y(t) (see [105]).

35

11 Performance evaluation via perturbation analysis

In this section, we review a framework for analyzing and evaluating the performance of discrete
event dynamic systems (DEDS) called perturbation analysis (PA) [40, 93, 195]. The approach
used in this framework is a quantitative approach that focuses on the performance measures of
DEDS. There are other state space approaches that concentrate on the qualitative aspects of
DEDS [129, 145, 159, 161], however, we shall concern ourselves only with the PA technique.

Discrete event dynamic systems (DEDS) are dynamic systems (typically asynchronous) in
which state transitions are triggered by the occurrence of discrete events in the system. Many
existing dynamic system have a DEDS structure, manufacturing systems and communication
systems are just two of them. The PA approach to analyzing DEDS is different from the analysis
techniques for the state space approach, the existence of a consistent and pre-defined automata-
like model of the system under consideration is not necessary to perform PA. For example, il we
consider a serial production line with M stations with a queue space of size K; for each station.
Then the total number of states for such a system would be ([TM, (K;4-1))(2M), which can amount
to billions for relatively small values of K; and M. It is quite clear that modeling such systems
as finite state machines is inefficient, if not impossible. It should also be mentioned that the
finite stale machines approach is more suitable for answering qualitative rather than quantitative
questions.

Perturbation analysis (PA) is a technique that calculates the sensitivity of performance mea-
sures of DEDS with respect to system parameters by analyzing its sample path. The object of
PA is to obtain the perturbed performance from a nominal experiment or sample path without
doing a perturbed experiment. To avoid doing more than one experiment or simulate a perturbed
experimenl is the goal ol PA.

11.1 Infinitesimal Perturbation Analysis (IPA)

To present the idea behind IPA, we shall first introduce a simple system (see Figure 8). It consists
of a buffer, call it A, where messages arrive and are placed in a FIFO queue, and is connected via
a link to another buffer, call it B, where the messages are received.
Consider the following definitions:
f = link service Lime (s/bit)
H = header length (bits)
L, = length of message 1 (bits)
We define the “service time” to be the time it takes to transmit a message 2 from A to B
assuming the message does not wail in the queue before it gets sent, We denote this by

Xi (H+L,)8

= v+ L. (1)

Let us also define the “system time”, t;, to be the time since a message @ arrives at A till it
is completely received by B. Finally let us call our performance measure T'(#,+). This can be

46

NulTer w Buller al

Arriving
PR . = "
Messages
Seurce Node Dmiulﬁu Nede

Figure 8: Link in a communication network.

approximated by using the mean system time, 70,7, N), where

(8,7, N) = (%))ﬁt (2)

=1

Note that as N — oo, 'f'(ﬂ, v, N) converges to T'(8, 7).
For sensitivity estimates, we use dT'/dfl and dT'/dy. A good estimate for d7'/d# is

F = [T(0 + A8, v, N) — (6,7, N)]/A0. 3)
Similarly a good estimate for d7T'/dy is
G = [T(0,7+ Ay, N) - T(0,7,N)]/Av. (4)

As can be seen, Lo obtain the estimates above one needs one more experiment at # 4+ A# and
another aty 4+ A~.

The problem here is to choose a value for Af (and similarly A«y). For, if we choose to large a
value we will not get a good estimate of the gradient. On the other hand, il we choose A# to be
too small, we may amplify the noise interference present in 7'(0,v + Av, N) and T'(8,, N). In
this section, however, we will not concern ourselves with this experimental problem.

11.1.1 An Unperturbed Experiment

Figure 9 displays the time evolution for a sequence of messages, that arrive and depart the buffer
of A, within a certain period of time. Where A; is the time between the arrival of M;_; and M;
(with the exception that A, is from the start of the experiment). We define a busy period (BP)
to be the time when the system is busy processing messages.

In our example, we start ofl with the buffer empty, and have to wait a time of length A; for
the first message to arrive, and another X; for the message to be completely transmitted (hence
total time is A; + X,;). However, during this time M, followed by Mj arrive at the queue and
have Lo wail for My to get fully transmitted. In the case of M; the arrival time is A; + A, and
the departure time is Ay + X + X3. More generally, M; has an arrival time of t; +Z;=.3 A; and
a departure time of g 4 3°/_; X, where t; = A;. Hence we can define the system time to be

[f.n-l-iX,)—(tu-l-iA.):ixj—Z':AJ (5)
Jj=2 =1

=1 =2

37

No. of messages at Source Node

Figure 9: Time evolution of the experiment.

where the sum is zero for the case when 7 = 1. Note that this sum only holds up until the time of
the complete departure of the fourth message (i.e. after the first busy period). Therelore, we can
rewrite the system time (as would apply to our specific example) in the following way :

>3 %-3 3 4 ©

i=1 j=1 1=1 3=2

or more generally, we can define it for the m* busy period as follows :

Zm Y Xisi - i 3 Akpie (7)
=1 3=1 =1 y=2

Hence the average system time of a message can be written as

~ 1 M nm ']
T0:9,M)= () X 3 (5 Khnts = 3 Abns))
m=l1= 1= 1=

11.1.2 Performing the IPA

We now consider the experiment at hand with the link service time set at # + A# (Lhe perturbed

experiment), In this case we will have an increase in the transmission time

AX; H + L;)A#

(A0/6) X,

38

M, M M, ™, M, M,
.—A.,—o-sq--l,-o-:k,:: A, - Ay sk i e
3 : bl ! :
z . : : .
.ﬁ 4+ ' ' ' '
33 : L
i ' S -
EXT . % V .
- F3 : 7 Z. .
= X, ' X,—.:u— X, —b-l-—-!‘—./
0 -) :-::-1 = b AL Tee
y'oy L/ ¥ 6X)saX saX yedX,
M| M! Ml “‘
ﬂ‘od:cﬂ,

Figure 10: Perturbations in the sample path for case i.

This means that M, will take AX longer to get fully transmitted, hence M; will take AX,+AX,,
and so on. Hence in the first busy period we have an increase in the system time

Aty = Yia1 AX;

= (A6/6) T, AX; (10)

However, when we move to the next busy period we musi take into consideration two possi-
bilities. Has the effect of Af caused M, to get completely transmitted after Ms arrives? If this
is not the case (see Figure 10) then the next busy period can be represented using equation (10).
On the other hand, il this is the case then, returning to our example, we can see from Figure 11
that

At; = AS; + AX;. (11)

where AS, is the time where the first busy period has overlapped with the second. Hence, it

follows that

Atg = AS) + AXs 4 AXs. (12]

in oLther words .
At; = AS, + (A8/8) Y X, (13)

=1

We can generalize the equations further so as to represent the m' busy period (let AS,,_,(A#f)
be the amount BP,,_, overlaps with the arrival of My, 41).

At +i = ASn—1(A0) + (AG/0) Z Xiiatiy i < Ty (14)

=1

39

.’ L]
A] --—-——-":-"*:‘— s
k] § C
z ' i
3 L
w ' .
L Voot
3 N ¥
] »
. 28
° (o
z X , / 85
0 r ’ . ¥ bt (B Tive =
v ¥ L ¥ aX 48X) saX yeaX,
M, M, M, ™,

Figure 11: Perturbations in the sample path for case ii.

Note that AS,,_1(A#) includes all effects of the previous busy periods. We are now ready to
define the average system time after performing the perturbation:

M nm 1
(0,7, N) = (Ai) Z, Z. [AS,_1(A8) + (A6/6) Z} X kt5]- (15)
m=l 1= i=

We are now ready Lo define the sensitivity of 7' with respect to 8:
dT'/df = d!tl?l—llu NIE:;J AT(8,v,N)/A6. (16)

Now we assume that as the number of messages increases the summations of busy periods’

overlaps becomes negligible. In other words:

) ‘ 1 M am
Jim dim () LY ASu-i(a0) =0, (17)

m=1| =l

Note that we will provide a reason for this assumption later on.
Hence, the correct measure of dT'/df is reduced to

M
o : 1
dT/df = lim (N) th‘:I Hyu /8. (18)
where
M nm,
H,, = Z Z Xbeti- (19)
m=] 1=1

40

So finally the gradient estimate can be defined to be
M
go(N) = (3 Hu)/(N8). (20)
m=1

We now try to estimate dT/dy. We note that the equation
Xi=nv+ Li6. (21)

tells us that + is independent of L; and #.Therefore

AX: = Ay.. (22)
It follows that
Ati = L= A7 (23)
= Ay EJ‘=| 1
Hence our estimator is trivially
M tm M

av(N)= (3233 L/N. (24)
m=1 i=1 m=1
Hence we can implement the following algorithm to calculate both d7'/dy and dT/d# at the same
time.

1. Initialize: Set J, XSUM, JSUM, HSUM, GSUM = 0);
Set THETA=#;
2. Update: At departure of next message (with service time observed to be X.J);
1.1) J+1
1.2a) XSUM = XSUM+ XJ
1.2b) JSUM = JSUM + 1
1.3a) HSUM = HSUM + XSUM
1.3b) GSUM =GSUM +JS5UM
1.4) If link is now idle then XSUM =0 and XSUM =0
3. Test: If J = N then go to OUTPU'T else goto UPDATE ;
4. Output: dT/d8 = HSUM/(N + THET A);
dT/dy = GSUM/N;

It was shown thal under the assumptions of small perturbation values and in the near-absence
of “dramatic” changes in the system’s behavior due to the perturbation (i.e. assuming very
little overlap between the busy periods, or, in other words, the system has the property that
limagso My 00 (%)) e Yo ASpn—1(A@) =0) that an experimental estimate, which con-
verges to the true value of dT'/df as N — oo, can be easily computed while the nominal (unper-
turbed) experiment is evolving . It should be noted that this gradient estimate is an infinitismal

41

PA (IPA) estimate, and for “sufficiently small” A# the IPA estimate will be equal to the finite
difference estimator. In other words we say

gs(N) = AT(6,7,N)/ A6, Af < e (25)

where ¢ is very small.

However, one should notice that the correct definition of the gradient involves letting N — oo
first and then A@ — 0 for convergence to dT'/df, but as can be noticed in (25), the order in which
we Lake limits is reversed, for we let A# — 0 then let N — oc. In order to be able to switch the
limits we must make the assumption that the system satisfies :

. AT(N;A8) . AT(N;A))
i T A T AlaNSl AP =
For it is this assumption that make it feasible to do the estimation for very small Af and then
find the estimator for large N (hence changing the order of taking limits).
Then it follows that

lim §o(N) = dT/de. (27)
N=oo

For the class of systems where (26) holds, hence, we can make excellent use of the PA experi-

menit.

11.2 IPA for a GI/G/1 System

We now consider the PA experiment when applied to a GI/G/1 queue. We start by defining two
sets of i.i.d(independent and identically distributed) random variables. First we have the set of

r.v.'s

{41, 4,,...}. (28)

this represents the sequence of interval times during a given experiment, and
{X1, X3,....}. (29)

represents a sequence of service times. Next, we assume that X; is dependent on 8. Finally,

we make an assumption that the system is stable, that is E(X;) < E(A;). We are interested in

the mean service time T'(#). This - as mentioned earlier - is close to the value of 7'(8, N) for large
N.or

lim T'(0, N) = T(8). (30)

N—eo
To estimate d7/df, we first make the assumption that the r.v.’s X;(#) are uniformly differen-
tiable. We make use of this assumption and of (9) and rewrite the equation (14) as

Atk i = ASu—1 (A8) + Y AXj, 5. (31)
=1
Also, we have
dX;/df = alflvr—“m AX;/AH. (32)

42

Hence, as before we try and estimate the sensitivity. We have

dT/df = limp—e limagso (fv) M TM S AX, /A8
= limye (]lv) Mei T 1 500 dX 45/ d0

Thus our IPA estimator is finally

(33)

() f: f:zdxw,,/dﬂ (34)

m=1i=1 j=1
11.2.1 Sensitivity Analysis for Random Parameters

Earlier in our development, we stated that X; is dependent on #. We now need to elaborate more
on this matter in order to display some features of the PA experiment. X; can be dependent on
in one of Lwo cases, In the first case

Xi=(H+L))e. (35)
Therefore
dX;/d8 = (H+ L)
36
However, there are other systems where
Xi=H+L;+86. (37)
Then, trivially
dX;/df = 1. (38)

What can be observed from the two results above is that A@ does not appear on the RIS.
This is the whole idea behind the IPA, for il means thal we can find the estimale without having
to repeat the experiment at A#! Furthermore, in the former result, we need not even concern
ourselves with the distribution of the r.v. X;. In the latter, case we don’t even need to know 6.

We can now safely make the assumption that dX;/df can be expressed as (X, 8).

The following is an algorithm [or estimating dX,/d#:

1. Initialize: Sev. J, XSUM, HSUM = 0;
2. Update: At departure of next message (with service time observed to be X J);
1.1) J 4 1;
1.2) XSUM = XSUM + PSI(XJ, THETA);
1.3) HSUM = HSUM + XSUM,
1.4) If link is now idle then XSUM = O
3. Test: If J = N then go to OUTPUT else goto UPDATE ;
4. Output: dT/dé =~ HSUM/N:

11.2.2 Coansistency of IPA

We now want to insure that the assumption that
lim ga(N) = dT/d8. (39)
N—ox)

is solid. But, assuming for the moment that the above assumpltion is true, we can also make the

following inference :
h}im E(go(N)) = dT /d6. (40)
— 00

We can prove this fact for an M/M/1 (due to the simplicity of the proof). This system is
described by an exponentially distributed arrival times, with rate A and mean 1/A, and by an
exponentially distributed service times with mean 6. Finally the traffic intensity is defined by
p = A0. We are also given

T(6) = 0/(1 - p)
E(B) = 0/(1 - p) (41)
E(B)* =268%/(1 - p)®

where B is a r.v. for the time length of an arbitrary busy period. Differentiating T, we get
dT/dé = 1/(1 — p)>. (42)
Also since we can see that @ is a scale parameter of X;, we have
dX;/df = X;/#. (43)

Since we are assuming that the estimate is consistent we can say

?:l dx,/dﬂ
(1/6) iy Xi

g (44)

Looking at 7_, X; we can see that it is the time from the start of a busy period till the
departure of the j'" message in this busy period. This summation can be rewritten as the time
from the start of the busy period to the time of the arrival of message j (denoted by z;), plus the
system time of the message. Or,

g=(z+1,)/0. (45)
Now working with the expected value of ¢ (to simplify our proof) we get
E(g) = (E(z;) + E(t;))/8 (46)

Analyzing the above equation we see that the expected system time was defined by us earlier
to be T'(#). On the other hand, E(z;) is the expected time for the message to arrive. Hence, one
of the following two cases may be the situation. Either the server is idle (denote that by /), or
the system is busy (denote that by #). In other words

E(z;) = (E(zj|1)pr + E(z;]b)p. (47)

44

Bulfer (Size B}
Maching === Maching

Uninlerrupied - Throughpui
Supply T
of
Fariy

Figure 12: A Simple Production Line.

But when the system is idle there is no busy period, therefore z; is zero. Therefore
E(z;) = E(zj|b)ps. (48)

where pj is the utilization of the server p, and E(z;|b) is the average time of a busy period
seen by a random arrival into the BP (which has been found to be E(B)?/2E(B)). Thus

E(z,) = pE(B)*/2E(B). (49)
going back to E(g), we now have
E(g) = (pE(B)*/2E(B) + T(6))/8. (50)
Substituting the values the we are given in (41) we get

E(g) = (p8/(1—p)*+0/(1—p))/0
= 1/(1-p)%

thus proving the assumption made in (39).

(51)

11.3 1IPA for General Networks

In the previous section, the main ideas of infinitismal perturbation analysis were illustrated using
a single server quene model of a communication link. To make use of IPA in realistic situations,
we have to look at IPA for more general systems. We are going to address the problem of finding
IPA algorithins for the case of a simple production line with just two machines and then for a
general network of servers.

11.3.1 IPA for a Simple Production Line

IPA can be performed for a simple production line consisting of two servers (machines) and a
buffer in between as shown in Figure 12. The production line can be thought of as a system
consisting of two computers and one buffer.

Server 1 (S)) is a machine whose cycle time depends on a parameter #;. We can assume that
Sy has an uninterrupted supply of parts to work on. After S; finishes its work cycle on a part, it
places the part in the buffer. The second machine Sy picks one part from the buffer, works on it
for a cycle time (which depends on a parameter #;) and then releases it to a finished goods area.

45

s 5% xal
! L lf, LY . X :' k. . 3 e Ay
" 4 9
31__ : ‘_
1 v_| t
1
s‘]"'T: - T v,:'r._'
'S] 1 YY v
+
[™<ITANT OF EXPERIMENT T - eaeny T

Figure 13: Nominal sample path for the production line.

The size of the buffer is B. If the buffer is full when S; completes a part then the part stays at S,
which is then unable to work on another part and is said to be blocked. S, remains blocked until
S; finishes its current cycle, releases its part, and takes the next part from the buffer, thereby
releasing a buffer space. We shall assume that all transfers take place in a negligible amount
of time, and that the finished goods area is never blocked. The performance measure we shall
consider of interest for this system is its steady state throughput (number of parts produced per
unit time) which we shall denote 7(6,,0;). We can define an experiment on this system, starting
with no parts in Sy, Sy, or the buffer, and ending when the Nth part is completed by S;. If T is
the length of time for this experiment, then the experimental estimate of the throughput is

7(01,02, N) = N/T (52)

Under some conditions, this estimate will satisfy

Jlim_#(61,02, N) = 7(61,0) (53)

which is desired for a good experimental estimate.

A typical sample path is shown in Figure 13 with N = 10, X, and Y; denotes the cycle time
for Sy and S; for the ith part. The vertical axis represents the number of parts at S; and at
the buffer, The size of the buffer B is 2 for this example, part ¢ is denoted by P; and dashed
lines implies that Sy is idle, crosses implies that S; is blocked. Our goal then is to develop an
IPA algorithm to estimate d7/df for this system. Introducing a perturbation A# in this system,
the perturbed sample path is shown in Figure 14. Where AX; (X;(8, + A#,) — X;(#,)) denotes
the change in cycle times at S, due to a change A#,; in the parameter 8;. It should be clear
that there is an implicit assumption for the perturbed path shown in Figure 14, namely that the
perturbations are small enough so that the order of events does not change, such assumption is
standard in [PA.

With the above assumption, stating the IPA algorithm becomes particularly simple. Letting
ACy and ACy be accumulators associated with Sy and S;, AC; is the perturbation at S, for the

46

an ANPAA, MK s AN, AX 4 BE, AR v AKX, ANFAX, AX AN . 8N, AN eAN.s X 2N,
g -+ '\-—-q -—q -41 e —N_
'sl - : . ' ;nat-nl . .
. X, S, & W, O Ny L R =

o - . ¥ i :
&8s ' : II
8 - ' 1

A ¥, 'r.- Y. ¢ 4
I o
g v - 0\\v| /y
[™~ys ant OF rxvER MaENT TIME et ax e ax,

ATaAX AN e AX 03X,

Figure 14: Perturbations in the sample path for the production line.

last part that left S;, and the arrows (— |) shows the values of the accumulators. Then we can
develop three rules, the first is that whenever a part P; has been served at S; the first accumulator
is incremented by AX;, the second is that if F; finds S; idle, then AC; gets the value of AC,
and finally if P unblocks S, by departing from 53 then AC, gets the value of AC';. We can then
proceed to write the algorithm for calculating the gradient of 8.

At the end of the experiment, AT = AC';, and as shown above AC’; is the sum of some of the
A X, values, say for ¢ € [. Under the assumption that the random values X;(#) have the property
that d.X;/df can be expressed as 1(X;, #), we can say that

dT . ACy
a0 A Ay, d E;e: ¥(Xirf1) (59
and since N is fixed by definition of the experiulenL, then
dr daT
— _(N/T2 — 2 il X BA
&, = ~NIT) g = ~(N/T") T (X8 (55)

Which implies that if we accumulate v/(X, #) instead of AXj;, in the first rule above, and call the
accumulators A, and Ag, then after the experiment is performed, the value —(N/T?) A, will be
the IPA estimate ol d7/d#,. The algorithm is then developed as follows :

I. Initialize: Set Ay, A3 = 0;
Set THET Al = 6y;
2. Update: Whenever a part (say FP;) completes service, check these conditions :
1) If F; completed service at S; then
Ay« A+ PSI(X.,,THETA1);

2) Il P; leaves S and terminates an idle
period of S; then Ay « Ay
3) If P; leaves S, and terminates a blocked

47

period of Sy then A, « Aj;
3. Test: If S, has completed N parts go to OUTPUT
else goto UPDATE
4. Output: Let T be the total time since the start of the experiment;
The IPA estimate of dr/df is —(N/T?)A;.

11.3.2 IPA for General Networks with Finite Buffers

Considering a general network with finite buffers, having a single server ai, each station, we can
generalize the algorithm described above easily to allow for more than two servers. It should be
noted that the only times when perturbations propagate from one server to another are when
idle or blocked intervals are terminated by a customer moving from one server to another. Thus
the propagation rules 2 and 3 in the above algorithm can he madified by allowing for any servers
S, and Si instead of S; and S; and naming the associated accumulators A; and A; and thus
replacing A, ¢ Ay by A « A;. In general network it is possible to have a situation of “chain”
blocking, where, for example, Sy is blocked by S;, and then in turn the buffer at Sy gets full
and it ends up blocking S;. In this case we just need to implement the propagation for each
unblocked server in turn, but there is no change in the rule. A further generalization would be to
change the first condition statement in the 2-server algorithm to allow the use of the accumulators
associated with different servers. It is also possible to state the algorithm in such a way so that
it can compute all K gradients at the same time as follows :
(A,, is the accumulator at S; for gradient with respect to 6;)

I. Initialize: Set Ay, i=1,..,K;j=1,... K}
Set THETA;=#6;,i=1,..., K;
2, Update: Whenever a customer (say (') completes service, check these conditions :
1) If €' completed service at S, then
Aii « A+ PSI(i,X,THETA));
2) If €' leaves S; and terminates an idle
period of S,, then A,,;, + Ay,
for j = 1,..., K'; (If there is a chain of blocking
then continue this procedure through the chain)
3. Test: If S.q¢ has completed N parts go to OUTPUT
else goto UPDATE ;
4. Output: Let T be the total time since the start of the experiment;
The IPA estimates of the K gradients dr/d#,
(= 1o K) are —=(N/T2)Angg (i= 1,000 K).

48

11.4 Extensions of IPA

In some cases, the IPA technique discussed above will fail to work. One instance might be due
to the assumption that small changes in the system parameter # will not cause coalescing of busy
periods in a GI/G/1 queue because of small Af. Suppose that the performance measure of interest
is the average number of messages sent between idle periods of a communication link. If we model
the link as a single server queue, this performance measure is the average number of customers
served in a busy period (BP). Denoting this average by /4(#), then a simple experimental estimate
for 3(#) would be to observe M BP's and then let

be.m = (3)

where n,, is the number of customers served in BF,,. Considering the arguments presented

in the IPA, we can see that [PA is based entirely on the assumption that no BPs will coalesce. If
we make A# small enough so that no BPs coalesce, then each n,, value will remain the same, so
that there will be no change in the estimate of the performance measure. Thus, the IPA estimate
of sensitivity will be zero ! It ig clear that this is wrong and thus IPA failed in this example.
IPA ignores the effects of some events in the system, when the probability of occurrence of these
events, multiplied by the effect of the events on the performance is significant, IPA fails. This

M
Mn (56)
1

m=

motivates some extensions which enable gradient estimation for a wider class of systems.

11.4.1 Smoothed Perturbation Analysis (SPA)

Motivated by the failure of IPA to work for the simple case above, the idea of using conditional
probabilities was introduced to develop an extension for the IPA. A conditioning variable can be
used Lo decompose the gradient estimale expectation expression. The fact that more information
is used in developing the conditional probability counts for the “smoother” kind of performance
measure estimate curve that is obtainable by using this method. For example, we can ask the
question, for a given A#, what is the expeciled change in the value of n;, based on the observed
BP.

11.4.2 Extended Perturbation Analysis (EPA)

For systems that can be represented by Markov chains, a new approach that may overcome Lhe
potential inconsistency of IPA can be applied. The idea behind the extended perturbation analysis
is the fact that the perturbed and unperturbed systems should be statistically evolving similarly
once they enter a common state z, due to their Markovian property. This method works by
choosing a finite A# and predicting, from the nominal path, where the perturbed path would
have branched to a different state, say y, while the nominal path continues in, say, state z. Up to
this point, an IPA-like estimator is used to compute the effects of perturbation, but at this point,
the computation is “frozen”. The algorithm then waits for the system to enter state y during
the nominal path, then EPA restarts. When an event order change occurs, the state sequences of
the nominal path (NP) and the perturbed path (PP) may or may not start to differ depending

49

alale Seouence
e i o e LT TLTE P R

W3 808030381395 50:37.50:5 151,51 S Sa-Ye- S5 80:Sp- Sy 515
Fig. 4. Sule wequences of 3 Markov DEDS,

alale Seouence
®1 323530y 3y H-’r'r\-"ur'o-ﬂr-'u ‘r’u-’j ’r’u-’: I3y e
=5 f. Nl ¥ \‘_-__" - s = @

I
-]
-

-—— e o ===

\
Bfi 3130 BBy S SB35 Bp BB 5y By 585,80, 55.50. 51 3452t S S

_______ 4 Artual perturbed path (PP)
Nominal path (NP)
- Construcied perturbed path (CPP)

“asw - .

Figure 15: Markovian state space sequences.

on whether some discontinuous change is involved (e.g., a job originally going to server A may
now go to server B). As shown in Figure 15, if wy and w; are two state sequences of a Markov
DEDS and the state sequence jumps on from S; on wy to S, on w, instead of Sj, on w,, subsequent
perturbations involving state changes may cause further deviations so that a perturbed path could
be made up from segments of state sequences from wy, wy,...,wj,...

We can see right way that EPA cannot be as efficient as IPA, since it may remain “inactive”
for significant sections of the nominal experiment. However, there are two factors that make
its performance better than one might expect. The first is that in most applications we do the
gradient estimation with respect to a number of parameters simultaneously, it will probably turn
out that several of the gradient computations are “active™, on average, during the observations
and the savings is still better compared to multiple experimentation. The second is that from a
practical point of view, one can often aggregate the states of the system to fewer subsets, and use
the aggregate state to decide whether to activate or deactivate the EPA calculation. Not only
does this keep the computation active for longer segments of the experiment, but it also enables
EPA to be applied to non-Markovian systems.

11.4.3 Other Perturbation Techniques

Another Perturbation technique is finite perturbation analysis (FPA), this technique was intro-
duced to overcome the IPA assumption that events do not change order. However, FPA considers
changes in order of events to a pre-specified limit, for example, it may consider only “first order”
changes, that is, changes in the order of adjacent events, and ignores any effects of changes in
order beyond adjacent events. The way it works then is to introduce perturbations and propagate
them while observing the nominal path, but limiting its calculations by only extrapolating to

50

predict the effect of such changes in order. Originally FPA was heuristic and experimental in
nature, however, recent research has been performed to provide more theoretical foundations for
it.)

Other techniques to make IPA work include changing the system parameter under consider-
ation to transform problems into “easier” versions, or to versions that have already been solved.
Using a different representation for the system sometime helps in performing IPA.

11.5 Research Issues and Future Work

Many problems regarding discrete event dynamic systems in general, and perturbation analysis
as an evaluation technigue remains open. For example, performing PA for a discrete parameter ¢
is one such interesting problem. In practical systems, many parameters (such as buffer sizes, or
number of servers at a station) are discrete in nature. It should be noticed that IPA, by its nature
can be applied only to continuous parameters. Understanding and expanding the domain of IPA
needs to be addressed, in fact, to “automate” the process of generatling algorithms to calculate
the sensitivity of a performance measure remains an open problem. To be able to construct a
preprocessing stage, where its inputs are the system specification and the performance measure
and parameters of interest, and the output as an IPA algorithm to be run while the nominal
experiment is performed, is one challenging problem for researchers. More work still remains to
he done on developing efficiency and accuracy measures for the PA output. Trying to get the
*maximum” amount of information from a sample path is another long-term goal.

12 State Space DEDS Representation

In this section, we review a framework for analyzing and controlling discrete event dynamic
systems (DEDS) [145]. The approach used in this framework is a state space approach that
focuses on the qualitative aspects of DEDS. It considers the issues of stability, observability,
stabilizability by output feedback and invertibility within this framework.

12.1 What is a discrete event dynamic system 7

Discrete event dynamic systems (DEDS) are dynamic systems (typically asynchronous) in which
state transitions are triggered by the occurrence of discrete events in the system. Many existing
dyvnamic system have a DEDS structure, manufacturing systems and communication systems are
just two of them. The state space approach in representing and analyzing such systems will
probably lead to more applications that might be incorporated into the framework of DEDS. It
will be assumed in the development of the stale space approach of analyzing DEDS that some of
the events in the system are controllable, i.e, can be enabled or disabled. The goal of controlling
DEDS is to “guide” the behavior of the system in a way thalt we consider “desirable”. It is
further assumed that we are able to observe only a subset of the event, i.e, we can only see some
of the events that are occurring in the system and not all. In some cases we will be forced to

make decisions regarding the state of the system and how to control a DEDS based upon our
observations only.

Next, we will discuss the finite state model of a DEDS. This model will be a simple non-
deterministic finite-space automaton. Graphical representations for DEDS automatons will be
used as examples to explain the definitions and ideas presented in the next four subsections.

12.2 Modeling

The discrete event dynamic systems under consideration can always be modeled by a nondeter-
ministic finite-state automata with partially observable and controllable events. In particular,
one can make the distinction between classical auntomata theory [98, 164, 114, 128] and the new
representation of DEDS in terms of the state transitions. In classical automata the events are
inputs to the system, whereas in DEDS the events are assumed to be generated internally by the
system and the inputs to the system are the control signals that can enable or disable some of
these events. We can represent our DEDS as the following quadruple :

G=(X,L,UrTI)

where X is the finite set of states, & is the finite set of possible events, I7 is the set of admissible
control inputs consisting of a specified collection of subsets of ¥, corresponding to the choices of
sets of controllable events that can be enabled and I' C ¥ is the set of observable events. Some
functions can also be defined on our DEDS as follows :

ed: X 2%
ec: X 2%
e f:XxE—2X

where d is a set-valued function that specifies the set of possible events defined at each state, ¢
is a set-valued function that specifies the set of events that cannot be disabled at each state, and
[is the set-valued function that specilies state transitions from a state under different events. An
output process can be formalized simply : whenever an event in I happens we see it, otherwise
we don’t see anything.

We can visualize the concept of DEDS by an example as in Figure 16 the graphical repre-
sentation is quite similar to a classical finite automaton. Here, circles denote states, and events
are represented by arcs. The first symbol in each arc label denotes the event, while the symbol
following “/" denotes the corresponding output (if the event is observable). Finally, we mark the
controllable events by “:u”™. Thus, in this example, X = {0,1.2,3}, X = {a, 3,48}, I' = {a, }, and
4 is controllable at state 3 but not at state 1. Also d(1) = e(1) = {a, 8}, d(3) = {5}, ¢(3) = ¢,
f(0,8) = {0,3} etc. A transition, r =7 y, consists of a source state, z € X, an event, o € d(zx),
and a destination state, y € f(z,0).

In general, a DEDS automaton A is a nondeterministic finite state automaton, however, if
fl(z,0) is single valued for each = € X then A can be termed as a deterministic finite state

h2

8/8

p

Figure 16: A Simple Example for DEDS.

Use

Figure 17: A Resource User Example.

automaton. A finite string ol states, x = zyry...z; is termed a path or a state trajectory from
zg if w41 € fla,,d(x;)) for all i = 0...7 — 1. Similarly, a finite string of events s = 0102...0; is
termed an event trajectory from 2 € X if oy € d(2) and 0,4y € d(f(z, 0104...01)) for all i, where

we extend [Lo X* via

f(z,0102...00) = f(flz,0109...0i_),0})
with f(x,¢) = . In our graphical example (Figure 16), o334 is an event trajectory.

Another realistic and simple example for a DEDS can be modeled as a resource user (Fig-
ure 17). Where the Automaton will be a deterministic one in this case, with three states I (IDLE),
R (REQUEST) and 7 (USE), and with transitions as shown.

Here we take X = {I,R, U}, £ = {a,0,7)}, I' = {a,,7}. The (two) control patterns
corresponds to enabling and disabling event [at state R. A transition R — {/ may occur only
when /7 is enabled. More interesting examples for using resources arise with the concurrent control
of several of the above resource user example.

12.2.1 Generated Languages

A collection of strings L C £* is termed a language over the alphabet ¥ [161]. For example, for
any z € X, L(A, z) is a language over £ which we refer to as the language generated by = in A.
In our first example (Figure 16), L(A,0) can be expressed as (4 + 34)°, where “4" denotes the
union of /3 and 6.

A language is termed a regular language if it can be expressed by using concatenations, unions
and *. Since we use a nondeterministic finite automaton to represent a DEDS, and we know
from classical automata theory that any nondeterministic finite automaton can be converted to a
deterministic finite one, it will always be the case that the langunages generated by a state in A are
regular, as deterministic finite automata always produce regular languages as opposed Lo more
powerful models such as pushdown automata, grammars and Turing machines. It will never be the
case that a state will generate a palindrome language or a language like {o'A'|a, 3 € £,i € N},
where N is the set of natural numbers. A recognizer can always be constructed for such a regular
langnage, it is also a fact that there exists a recognizer with the least possible number of states.

Such a recognizer is termed minimal.

12.2.2 Ranges and Liveness

If we denote a transition labeled by & by —7, then we can similarly let —=* denote a string of
transitions s and —" denote any number of transitions, including no transitions. We can define
the range ol a state x by

R(A,z) = {y € X|z =" y}

indicating the set of states that can reached from z, we can also define the range of a subset
of states @ in X by

R(A,Q) = Useq R(A, 2)

An algorithm for computing R(A, Xg) for any X¢ C X that runs in O(n) where n = | X| can
be easily formalized as follows :

Lel Ry = CJU = Xov and ilerale
Rig1 = Ry U f[QL-;E)
Qks1 = Riyr N Ry
Terminate when Ryyy = Ry, Then, R(A, Xo) = Ry.

A state z € X is alive if d(y) # ¢ for all y € R(A,z). A subset Y of X is termed a live set il
all # € Y are alive. A system A is termed alive il X is a live sel.

12.3 Stability

In this section we discuss the notions of stability and the possibility of stabilizing a discrete event,
dynamic system. In particular, we are going to concentrate on stability notions with respect to
the states of a DEDS automaton. Assuming that we have identified the set of “good” states, I,

54

Figure 18: Stability Example.

that we would like our DEDS to “stay within” or do not stay outside for an infinite time, the
problem would reduce to :

¢ Checking out whether all trajectories from the other states will visit E infinitely often.

e Tryving to “guide” the system using the controllable events in a way such that the system
will visit the “good” states infinitely often.

We shall start by defining and testing for different notions of stability and then discuss ways
Lo stabilize a system. We shall start by assuming that the DEDS model under consideration is
an uncontrolled system with perfect knowledge of the state and event trajectories (ENT = @), to
simplify developing the definitions and examples.

12.3.1 Pre-Stability

To capture the idea of stability , we can suppose that we have already identified a subset of states
F in X that returning to £ implies being in a position to continue desired behavior from that
point on. We can define the notion of a state in the DEDS being stable with respect to E'in two
stages. The first stage will be the weaker notion and will be termed pre-stability. We say that
¢ € X is pre-stable if all paths from z can go to E in a finite number of transitions, i.e, no path
from = ends up in a cycle that does not go through E.

In Figure 18, states 0, 2, 3, and 4 are pre-stable, since all transitions from them can goto {0,
3} in a finite number of transitions. State 1 is not pre-stable since it will stay forever outside E
il an infinitely long string of 4’s occurs,

A definition of pre-stability can be formalized as follows :

(%]
o

Given a live system A and some E C X, a state z € X is pre-stable with respect to E (or
E-pre-stable) if for all x € X' (A, z) such that |x|> n, there exists y € x such that y € E. We say
that a set of states is F-pre-stable if all its elements are E-pre-stable and a system A is pre-stable
il X is E-pre-stable.

The restriction for liveness can be flexible in the sense that if all the dead states are within E,
then an automaton might still be E-pre-stable. It follows from the above definition that a state
z € X is E-pre-stable iff z € E or f(z,d(z)) is E-pre-stable. The following algorithm computes
the maximal F-pre-stable set X, within a system :

Let Xg = F and iterate :
Xk41 = {a:[f{:z,d[z)) | Xkl' UX i
Terminate when X4y = Xy, then X, = Xj.
In Figure 18, it can be noticed that X; = X; = X, = {0, 2, 3, 4}.

12.3.2 Stability

The stronger notion of stability corresponds to returning to the set of “good” states E in a finite
number of transitions [ollowing any excursion outside of F. Thus, given E, we define a state
z € X to be E-stable if all paths go through E in a finite number of transitions and then visit F
infinitely often.

As an example, in Figure 18, where F = {0, 3}, only 2 and 3 are stable states. State 1 is
not stable since the system can loop at 1 infinitely. State 0 although in E' is not stable since the
system can make a transition to 1 and then stays there forever, the same applies to state 4.

We can use the previonsly defined notion of pre-stability and define a state to be E-stable if
all the states in its reach are E-pre-stable. In Figure 18, 0 and 4 are not E-stable since they can
reach 1, which is not E-pre-stable. We can define stability as follows :

Given a live A and z € X, x is E-stable iff R(A,z) is E-pre-stable. A Q C X is stable if all
z € () are stable. A system A is stable if X is a stable set, from which we can conjecture that A
is E-stable iff it is also E-pre-stable.

12.3.3 f-Invariance

A much stronger notion of stability can be described as “staying” within a given set of states. We
thus define f-invariance for a subset (§ in X as follows :

A subset) of X is [-invariant if f(Q,d) C Q where
[(Q,d) = Useq f(2,d())

It follows that any trajectory that starts in an f-invariant set stays in thal set forever, il also
follows that a set (@ is f-<invariant ifl R(A,Q) C Q.

12.3.4 Pre-Stabilizability

In this section we introduce control and reconsider the stability notions discussed before. We
try to “guide” our system or some states of it to behave in a way that we consider desirable.

hi

Figure 19: Example for the notion of Pre-Stabilizability.

Pre-stabilizability is described as finding a state feedback such that the closed loop system is
pre-stable. We can then define pre-stabilizability formally as follows :

Given a live system A and some FF C X, # € X is pre-stabilizable with respect to I (or
F-pre-stabilizable) if there exists a state feedback K such that = is alive and E-pre-stable in Ag.
A set of states, @, is a pre-stabilizable set if there exists a feedback law K (s) (A control pattern
) so that every @ € @ is alive and pre-stable in Ay, and A is a pre-stabilizable system if X is a
pre-stabilizable set.

As an example, in Figure 19, state 1 is pre-stabilizable since disabling < pre-stabilizes 1.
However, disabling v at state 2 leaves no other defined events at 2 and “kills” it, so neither state

2 or 3 is pre-stabilizable.

12.3.5 Stabilizability and (f,u)-Invariance

Stabilizability is an extension of pre-stabilizability, Stabilizability is described as finding a state
feedback such that the closed loop system is stable. We can then define stabilizability formally
as follows :

Given a live system A and some F C X, # € X is stabilizable with respect to F (or E-
stabilizable) if there exists a state feedback A" such that z is alive and E-stable in Ax. A set of
states, @, is a stabilizable set if there exists a feedback law K (s) (a control pattern) so that every
x € (Q is alive and stable in Ag, and A is a stabilizable system if X is a stabilizable set.

In Figure 20, disabling 3 at state 2 is sufficient to make the whole system stable with respect Lo

state (). Disabling -y at state 1 will help stabilize only state 1, because the system can then continue
looping between states 2 and 3. Disabling 3 at state 3 will not help stabilize or pre-stabilize any

o
s |

B d:u

Figure 21: (f-u)-Invariance Example.

slate.

Using control patterns to “drive” a subset of a system to be f-invariant is still another notion
of stabilizability. A subset @@ of X is (f,u)-invariant if there exists a state feedback K such that @
is [invariant in Ag. Another notion of (f,u)-invariance is sustainable (f,u)-invariance. A subset
Q of X is a sustainably (f,u)-invariant set if there exists a state feedback K such that @ is alive
and f-invariant in Ajg.

For example, in Figure 21, disabling event « at state 1 will make the subset {1, 2} sustainably
(f.u)-invariant. Also, disabling event § at state 1 will make the subset {0, 1} sustainably (f,u)-
invariant.

12.4 Observability

In this section we address the problem of determining the current state of the system. In particular,
we are interested in observing a certain sequence of observable events and making a decision
regarding the state that the DEDS automaton A might possible be in. In our definition of
observability, we visualize an intermittent observation model, no direct measurements of the
state are made, the events we observe are only those that are in I' C £, we will not observe events

HR

=p» Output String

Perfect state knowledge

Figure 22: Notion of Observability: The state is known perfectly only at the indicated instants.
Ambiguity may develop between these but is resolved in a bounded number of steps.

in N T and will not even know that any of which has occurred. State ambiguities are allowed
to develop (which must happen if £ # I') but they are required to be resolvable after a bounded
interval of events. This notion of observability can be illustrated graphically as in Figure 22,

12.4.1 Requirements

In developing the theory and examples we shall concentrate on uncontrolled models of DEDS
automatons with partial knowledge of the event trajectory. Due to the fact that we are “seeing”
only observable events in I' in our system, it is not desirable to have our automaton generate
arbitrarily long sequences of unobservable events in XN T. A necessary condition to guarantee
this is that the automaton after removing the observable events A|T, must not be alive. In fact,
it is also essential that every trajectory in A|l is killed in finite time by being forced into a dead
state. It can be seen that the condition for a DEDS automaton to be unable to generate arbitrarily
long sequences of unobservable events, is that A|T must be D-stable, where D is the set of states
that only have observable events defined (i.e, D = {z € X|d(z)nT}).

12.4.2 State Observability

As illustrated in Figure 22, a DEDS is termed observable if we can use the observation sequence to
determine the current state exactly at intermittent points in time separated by a bounded number
of events. More formally. taking any sufficiently long string, s, that can be generated from any
initial state x. For any observable system, we can Lhen find a prefix p of & such that p takes z
to a unique state y and the length of the remaining suffix is bounded by some integer n,. Also,
for any other string f, from some initial state ', such that 1 has the same output string as p, we
require that ¢ takes z' to the same, unique state y.

In Figures 23 and 24 a simple system and its observer are illustrated. It can be seen that
the observer will never know when will the system be in states 3, 4 or 5, since the events that
takes the system to Lhose states are unobservable (§/¢ means that § € £NT), namely § and
7. There are two states in the observer which are ambiguous, however, another two states are
singleton states, i.e, when our observer reaches them, we'll know the exact state that the DEDS
in currently in,

59

Y,E TfE

()

o/o oo o/
B/P ala
T) (" R n—

Figure 23: A Simple DEDS automaton.

Figure 24: Observer for the simple DEDS automaton.

60

Had it been the case that our observer could, for example, loop forever in ambiguous states,
then the DEDS would be unobservable. This leads to the following formal definition of observ-
ability that ties it with the notion of stability :

A DEDS automaton A is observable iff E is nonempty and O is E-stable.
where O is the observer for A and F is the set of singleton states of O. It can be seen that
the observer in Figure 24 is stable with respect to the nonempty subset of states {0, 2} and thus
the DEDS of Figure 23 is observable.

12.4.3 Indistinguishability

We term pair of states (z,y) indistinguishable if they share an infinite length output (observable)

event sequence. I we define :

Yo={r € X| Ay € X,y € X, such that z € f(y,v)}
Yi ={x € X|3y € X,y €T, such that z € f(y,7)}
Y=YouY,

Then Y is the set of states = such that either there exists an observable transition defined
from some state y to z, or # has no transition defined to it. As discussed above, the observer
only uses the states in Y, and thus we can formally define indistinguishability for states in V" as
follows :

Given z € X, let L, (A, z) denote the set of infinite length event trajectories generated from x,
and h(L. (A, z)) the corresponding set of output {observable) trajectories. The pair (z,y) € ¥ xY
is an indistinguishable pair if h(Loo (A, 2)) Nh(Loo(A,y)) # ¢.

It can be noticed that in Figure 23, (0,2) is an indistinguishable pair since an infinite string
of a’'s is one of the possible observable output event sequences from either states. However, this
system was shown to be observable, thus the non-existence of indistinguishabilities is not required
for observability. If there are indistinguishable states, we will not always be able to determine
which of these we were in at some point in the past, but this does not rule out the possibility that
we may occasionally know the current state.

12.4.4 WD Observability

A system is termed WD observable if it is observable with a delay. It is required that there is
perfect knowledge of the stale some finite number of transitions into the past at intermittent
points in time. Figure 25 illustrates the concept of WD observability.

As an example of a WD observable DEDS, Figure 26 represent such an automaton and its
observer. All events in this example are assumed to be observable. The system is not observable
since the observer does not have any singleton states (¥ is empty). When o« or f occurs, we
do not have perfect knowledge of the current siate, but when either a or A happens we know
perfectly what was the previous state,

61

Output String

Current Time

Perfect state knowledge

Figure 25: Observability with a Delay: The state, a finite number of transitions into the past, is
known perfectly at intermittent (but not necessarily fixed) points in time.

System Observer

(94

o

Figure 26: Example for WD Observability.

62

12.5 Output Feedback Stabilizability

In this section we combine the ideas discussed in the previous two sections regarding observability
and stability to address the problem of stabilization by dynamic output feedback under partial
observations. In this section we concentrate on partially controlled systems with partial knowledge
of the event trajectory. In particular, the goal is to develop stabilizing compensators by cascading
and a stabilizing state feedback defined on the observer’s state space.

12.5.1 Requirements

To attack the problem of output feedback stabilization, it should be noticed that we are actually
trying to “manipulate” the system’s observer, in other words, what we have available in a sequence
of observable events (the system’s output) and we are trying to use this output to control the
behavior of the system using only the events that we can control. It is then possible to redefine
the problem of output feedback stabilization as the stabilization of the observer by state feedback.

The obvious notion of output E-stabilizability (stabilizability with respect to E C X) is the
existence of a compensator (' so that the closed-loop system Ag is E-stable. It is possible that
such a stabilizing compensator exists, such that we are sure that the system passes through the
subset I infinitely often (E-stable) but we never know when the system is in E. A stronger notion
of output feedback stabilizability would not only requires that the system passes through subset
E infinitely often, but also that we regularly know when the system is in £. In out example and
discussion we shall concentrate on this stronger notion of output stabilizability.

12.5.2 Strong Output Stabilizability

The basic idea behind strong output stabilizability is that we will know that the system is in
state F ifl the observer state is a subsel of . The lact that the observer state should be a subset
of E instead of having the observer state of interest includes states in E is because we want to
guarantee that our system in within £. Our compensator should then force the observer to a state
corresponding to a subset of E al intervals ol al most a finite integer i observable Lransitions. We
can then formalize the notion of a strongly output stabilizable system as follows :

A is strongly output E-stabilizable il there exists a state [eedback K for the observer O such
that O is stable with respect to Eop = {z e Z |z C E }.
where Z is the set of states of the observer.

As an example, considering the DEDS and its observer in Figure 27, where E = {1, 2}, we
have to check the observer stability (or stabilize the observer) with respect to Eg, because this
is the only observer state that is a subset of E. As a start, we do not know which state is our
system in (as denoted by the state {0, 1, 2, 3}), however, using the observer transitions we can
see that to achieve Eg-stability for the observer we only need to disable « at the observer state
{0, 2}. It should be noted that all the events are observable in this DEDS automaton.

63

Observer

Figure 27: Example for Strong Output Stability (all the events are observable).

6i4

12.6 Invertibility

In this section we will discuss the notion of invertibility. The problem of invertibility arises due
to the fact that a DEDS is, in general, a partially observable system. That is, “seeing” some
events while observing a system does not imply that those events were the only ones that actually
happened, The problem of reconstructing the full event sequence given only output (observable)
events is what we term the invertibility problem.

12.6,1 Requirements

In order to be able to tackle this problem we need to use the automata model of a DEDS, so
it will be assumed that the model of the DEDS behavior is known a-priori. The invertibility
problem arises due to the fact that ' € X, had ' = I, invertibility would have been a trivial
problem. The model we shall use in this section will be the standard model of a DEDS discussed
in section 2, with partial knowledge of the event trajectory, however, the assumption that the
system is uncontrollable will be made to simplify developing the theory. There are two notions of
invertibility : The first notion assumes that the initial state in the DEDS automaton in known,
the second notion does not assume that. It should be quite clear that the second notion will be
harder to analyze, because it involves estimating the current state first. In our treatment of the
problem we will discuss the first notion.

12.6.2 WD-Invertibility

By WD-invertibility we mean invertibility with a delay. We consider the DEDS automaton A
that is the minimal automaton generating the event language L = L(A, zp), so that all the states
can be reached from zg, and no two states generate the same language. We also assume that
A is deterministic. It should be “safe” enough to make those assumptions, because we will be
concerned with the estimation of elements in L, we also can always choose a minimal deterministic
automaton with an initial state that generates L, due to that fact that L will always be a regular
language.

In particular, we are concerned with the problem that given L (or A and zg), whether we can
reconstruct an evenl, trajectory & € L when we only observe the part of s in I'.

We define a WD-invertible language, as one in which we can, at any time, use knowledge of
the output (observable) sequence up to that time to reconstruct the full event sequence up to a
point at moest an integer number of events ny into the past.

Figure 28 shows a graphical explanation of the notion of WD-invertibility.

WD-invertibility can be illustrated by an example as in Figure 29. In this system, state 0
in the initial state. The notalion «/¢ means that event « is not observable. In this case, L is
WhD-invertible with ny = 4. It is not invertible at all without delay (i.e, with ngs = 0). As an
example, if we observe o2, the original input sequence could be a(de)? or a(da)?s or adea, ete.,
but the first three evenis are known with certainty.

=, Eventsequence

Output sequence
(intermittent observations)

Exact reconstruction Possible ambiguity
Figure 28: Invertibility with a Delay: Given the output sequence, the event sequence is recon-

structed exactly but with some delay. The ambignity at the end of the reconstructed string will

be resolved using future observations.

o/e _/ G/0o

c/c||y/y

B/e \f 5/¢
2 4

Ty

Figure 29: Example for WD-Invertibility: State 0 is the initial state.

S/e 5/ 6

Y'Y

p/e 5/8

Figure 30: Example for an Ambiguous System,

12.6.3 Ambiguity and Non-Invertible DEDS

To discuss the notions of ambiguity and non-invertibility we need (o define a few notations on
languages. In particular :

e L;(A,x): All the strings in LA, x) with observable events as their last events.
o Ly(A,z) : Those strings in Lg(A,z) that have only one observable event.

o L,(A,z): The set of strings in Ly(A,) that have o € I' as the observable event.

A DEDS automaton A is termed ambiguous if for some z € X and € I', there exists distinct
strings s,t € L.(A,z) such that f(z,s) = f(z,t). Moreover, if A ambiguous, then L is not
WD-invertible. In other words, if there exists two different sequences of events taking a state
to another, and with the same observable event for both sequences, then the language is not
WD-invertible. This is because no future behavior will enable us to distinguish between those
strings.

In Figure 30, the system is ambignons as both od and 44, which produce the same output
(observable events), take state 0 to state 3. Thus the language generated from state 0 is not
invertible.

A DEDS antomaton A might be non-invertible although it is unambiguous, that is, unam-
biguity alone is not sufficient for invertibility. For example, the automaton in Figure Figure 31,
where 0 is the initial state, is not ambiguous, but L is not invertible, since the event trajectories
(Aa)™ and (dcv)™ both have the same output o*. Following from the fact that R(A, zp) = X, one
can say that L is WD-invertible iff L(A, z) is WD-invertible for each z € X.

67

o/ o

B/E - B/E

/¢ o/ o

2 0/¢ 4

Figure 31: Example for an Unambiguous but not Invertible System: State 0 is the initial state,

12.7 Discussion and Future Work

In this section, we have reviewed some basic notions related to discrete event dynamic systems.
We emphasized upon the automaton model of a DEDS and described some ideas regarding con-
trolling and observing the behavior of such systems. As a luture extension, more powerful models
could be used instead of finite automata, for example, Grammars, Pushdown Automata, Turing
Machines and /or p-recursive functions. Applications related to fields other than communication
and manufacturing systems could be exploited. Many dynamic tasks can be modeled as DEDS
and thus they can be analyzed and controlled efficiently using the ideas discussed in this section.

13 Proposed Model

We have built a software environment to aid in the design, analysis and simulation of Discrete
Event and Hybrid Systems. The environment allows the user to build a system using either Finite
State Machines or Petri-Nets. The environment runs under X/Motif and supports a graphical DES
(Discrete Event System) hybrid controller, simulator, and analysis framework. The framework
allows for the control, simulation and monitoring of dynamic systems that exhibits a combination
of symbolic, continuous, discrete, and chaotic behaviors, and includes stochastic timing descrip-
tions (for events, states, and computation time), probabilistic transitions, controllability and
observability definitions, temporal, timed, state space, petri-nets, and recursive representations,
analysis, and synthesis algorithms. The environment allows not only the graphical construction
and mathematical analysis of various timing paths and control structures, but also produces C
code to be used as a controller for the system under consideration.

Using the environment is fairly simple. For finite state machines the designer uses the mouse
to place states (represented by ovals) and connect them with events (represented by arrows).

68

- [v.«-m '

AT T en T

i :
e “"“IT‘
; I Lumsns fCrnarer s v
RS R e Y R
o Dy] 2
2 Gauslan Naispatch
---- o
3
¥
i
-
TR BT E
bartran 1 3'.
| duatribution will be of this i

Figure 32: A stochastically timed FSM window during analysis

Transitions and states can be added, moved and deleted easily. Figure 32 is an example of a
simple stochastically timed FSM, containing 4 states and 5 events.

The probabilities on the events (that is, which path to navigate in the automaton) is designated
using the mark field in the status dialog box. The different timings (on event and state times)
and distribution function type, mean and variance can be assigned through the status dialog box
too. The allowable distributions are currently restricted to Gaunssian and exponential functions,
but can be easily extended to arbitrary discrete or continuous distributions. A window shows the
distribution function at a state or event, and also allows the user to do queries. For example:
queries on whether a path Lime probability is greater or less than a give time, or combined timing
distributions to reach a goal state through various paths, etc. The dialog box allows the user to
perform queries of various kinds. The currently selected state/event is drawn with a dashed line,
and the information in the status window pertains to it. Optimizing paths based on stochastic
timing can also be performed, in that case, windows will pop out with the event path, and the
status window will have the combined distribution function. Figure 33 presents an automaton
model in the environment. The environment also produces C code for controlling the system
under consideration.

In our PN model we have extended the definition of stochastic timed Petri Nets, to have
additional timings. Our model has three times associated with it, a place time, a delay time,
and an event time (see Figure 34). The place time is a time where the token is held back, and
delays the enabling of the transition, this represents the computation time of that place. The

69

Figure 33: A snap shot of the FSM environment,

70

Place Time

Delay Time

\i

=" Event Time

!

Figure 34: The proposed three time zones for a timed Petri net.

delay time is a time associated with the input arcs to a transition, it represents the time to leave
the corresponding place. The event time is analogous to the single time in stochastic timed Petri
Nets which is called firing tine. We believe Lhat this lends to a more intuilive representation of
the times, and simplifies the modeling task since it captures more details than the original timed
Petri net model.

We can define the new model as:
PN = (P, T,A,W, z)
where,
e P = set of places with associated random variables
e T = set of transitions
o A= Ay U Ap with

— A, set of elements from {P x T} with associated random variables

— Auu set of elements from {T x P)
e W = a weight function, w: A — {1,2,3,...}

e 19 is an initial marking

The environment for Petri-Nets is similar. Places are represented graphically by circles, tran-
sitions by ellipses, and arcs by arrows. As mentioned above, Lthere are three locations where one
can place timing information, on the events - the event time, which is the time the actual event

71

Figure 35: A snap shot of the Petri-net environment

takes, place time - when a token is moved, through a transition firing, there is a place time, which
hides the token until it has expired, the final time is a delay time, this comes into effect when a
transition fires, it is the time for the event to reach the transition, the event time will not start
until all of its input tokens delay time has expired. Figure 35 depicts a snap shot of the Petri-Net
environment in action.

The system generates C code for the user hybrid system, so one can simulate and control an
actual system using the code. The C code is currently generated for FSMs (soon code will be
generated for PN's too). A Petri Net will be converted to a FSM before code is generated, all of
the timing is then placed on the events. The user has to select the initial state, and provide the
function for simulating/generating the events, the code will keep track of the elapsed simulated

time, and will return when it reaches a state with no transitions.

The environment allows conversion back and forth between the FSM and PN models. Con-
version to a Petri net is straight forward, but one looses the event probabilities. The only thing
that's needed is to create a transition for every event. Conversion from a Petri-net to a FSM is
only possible if the PN is k-bounded, which means no place can ever have more than k tokens.
The system generates a state for every possible marking of that net. The states are represented
as the marking, the evenls are just the transitions. Three 3 times are pushed into the events,

The system convolves the maximum of the input delays, with the event, and the maximum of the
place times. The maximum function is a standard convolution, except that the maximum is used
instead of multiplication. '

The algorithm for generating all of the markings starts with some initial marking, then goes
through all of the possible transitions, if it can fire, the firing is simulated, and the new marking
is inserted in the set of states, if it is already represented, the transition is kept; otherwise the
transition is kept and recursion is done with the new marking. This process is repeated till no
transitions can be fired.

Our system serves as much-needed graphical simulator, analyzer, synthesizer, monitor, and
controller for complex hybrid systems models using either Petri nets or FSMs high-level frame-
works,

14 Discrete Event Observation Under Uncertainty

We present a new framework and representation for the general problem of observation. The
system being studied can be considered as a “hybrid™ one, due to the fact that we need to
report on distinct and discrete visual states that occur in the continuous, asynchronous and three-
dimensional world, from two-dimensional observations that are sampled periodically. In other
word, the system being observed and reported on consists of a number of continuous, discrete and
symbolic parameters that vary over time in a manner that might not be “smooth” enough for the
observer, due to visual obscurities and other perceptual uncertainties.

The problem of observing a moving agent was addressed in the literature extensively. [t
was discussed in the work addressing tracking of targets and, determination of the optic flow
[7,36,102,197], recovering 3-D parameters of different, kinds of surfaces [21,134,190,194], and also in
the context of other problems [6,13,48,84]. However, the need to recognize, understand and report
on different visual steps within a dynamic task was not sufficiently addressed. In particular, there
is a need for high-level symbolic interpretations of the actions of an agent that attaches meaning
to the 3-D world events, as opposed to simple recovery of 3-D parameters and the consequent
tracking movements to compensate their variation over time.

In this work we establish a framework for the general problem of observation, recognition
and understanding of dynamic visual systems, which may be applied to different kinds of visual
tasks. We concentrate on the problem of observing a manipulation process in order to illustrate
the ideas and motive behind our framework. We use a discrete event dynamic system as a high-
level structuring technique to model the visual manipulation system. Our formulation uses the
knowledge about the system and the different actions in order to solve the observer problem in
an efficient, stable and practical way. The model incorporates different hand/object relationships
and the possible errors in the manipulation actions. It also uses different tracking mechanisms
so that the observer can keep track of the workspace of the manipulating robot. A framework
is developed for the hand/object interaction over time and a stabilizing observer is constructed.

73

Low-level modules are developed for recognizing the “events” that causes state transitions within
the dynamic manipulation system. The process uses a coarse quantization of the manipulation
actions in order to attain an active, adaptive and goal-directed sensing mechanism.

The work examines closely the possibilities for errors, mistakes and uncertainties in the visual
manipulation system, observer construction process and event identification mechanisms, leading
to a DEDS formulation with uncertainties, in which state transitions and event identification is
asserted according to a computed set of 3-D uncertainty models.

We motivate and describe a DEDS automaton model for visual observation in the next sec-
tion and then proceed to formulate our framework for the manipulation process and the observer
construction. Then we develop efficient low-level event-identification mechanisms for determin-
ing different manipulation movements in the system and for moving the observer. Next, the
uncertainty levels are discussed. Some resulls from testing the system are enclosed.

14.1 Hybrid and Discrete Event Dynamic Systems for Robotic Observation

Hybrid systems, in which digital and analogue devices and sensors interact over time, is attracting
the attention of researchers. Representation of states and the physical system condition includes
continuous and discrete numeries, in addition to symbols and logical parameters. Most of the cur-
rent vision and robotics problems, as well as problems in other domains, fall within the description
of hybrid systems. There as many issues that need to be resolved, among them, definitions for ob-
servability, stability and stabilizability, controllability in general, uncertainty of state transitions
and identification of the system. The general observation problem falls within the hybrid system
domain, as there is a need to report, observe and control distinct and discrete system states.
There is also a need [or recognizing continuous 2-D and 3-D evolution of parameters. Also, Lhere
should be a symbolic description of the current state of the system, especially in the manipulation
domain.

We do not intend to give a solution for the problem of defining, monitoring or controlling
such hybrid systems in general. What we intend to present in this work is a framework that
works for the class of hybrid systems encountered within the robotic observation paradigm. The
represeniation we advocalte allows for the symbolic and numeric, continuous and discrete aspects
of the observation task. We conjecture that the framework could be explored further as a possible
basis for providing solutions for general hybrid systems representation and analysis problems.

We suggest the use of a representation of discrete event dynamic systems, which is augmented
by the use of a concrete definition for the events that causes state Lransitions, within the obser-
vation domain. We also use some uncertainty modeling to achieve robustness and smoothness in
asserting state and continuous event variations over time.

Dynamic systems are sometimes modeled by finite state automata with partially observ-
able events together with a mechanism for enabling and disabling a subset of state transitions
[129,145,159], the reader is referred to those references for more information about this class of

DEDS representation. We propose that such a DEDS skeleton is a suitable high-level frame-
work for many vision and robotics tasks, in particular, we use the DEDS model as a high-level
structuring technique for a system to observe a robot hand manipulating an object.

14.1.1 Discrete event dynamic systems for active visual sensing

An example of a high-level DEDS controller for part inspection can be seen in Figure 36. This
finite state machine has some observable events that can be used to control the sequencing of
the process. The machine remains in state A until a part is loaded. When the part is loaded,
the machine transitions to state B where it remains until the part is inspected. If another part
is available for inspection, the machine transitions to state A to load it. Otherwise, state C, the
ending state, is reached. If an interruption occurs, such as a misloaded part or inspection error,
the machine goes to state D, the error state.

Our approach uses DEDS to drive a semi-autonomous visual sensing module that is capable
of making decisions about the visual state of the manipulation process taking place. This module
provides both symbolic and parametric descriptions which can be used to observe the process
intelligently and actively.

- 3

<inspect>

<next part>

<inspecting>

Figure 36: A Simple FSM

A DEDS framework is used to model the tasks that the autonomous observer system executes,
This model is used as a high level structuring technique to preserve and make use of the infor-
mation we know about the way in which a manipulation process should be performed. The state
and event description is associated with different visual cues; for example, appearance of objects,
specific 3-D movements and structures, interaction between the robot and objects, and occlu-

sions. A DEDS observer serves as an intelligent sensing module that utilizes existing information

75

about the tasks and the environment to make informed tracking and correction movements and
autonomous decisions regarding the state of the system.

To be able to determine the current state of the system we need to observe the sequence of
events occurring in the system and make decisions regarding the state of the automaton. State
ambiguities are allowed to occur, however, they are required to be resolvable after a bounded
interval of events. In a strongly output stabilizable system, the state of the system is known at
bounded intervals and allowable events can be controlled (enabled or disabled) in a way that
ensures return in a bounded interval to one of a desired and known set of states (visual states in
our case).

One of the abjectives is to make the system strongly output stabilizable and/or construct an
observer to satisfy specific task-oriented visual requirements. Many 2-D visual cues for estimating
3-D world behavior can be used. Examples include: image motion, shadows, color and boundary
information. The uncertainty in the sensor acquisition procedure and in the image processing
mechanisms should be taken into consideration to compute the world uncertainty.

The observer framework can be utilized for recognizing error states and sequences. This
recognition task will be used to report on wisually incorrect sequences, In particular, if there is a
pre-determined observer model of a particular manipulation task under observation, then it would
be useful to determine if something goes wrong with the exploration actions. The goal of this
reporting procedure is to alert the operator or autonomously supply feedback to the manipulating
robot so that it can correct its actions.

14.1.2 DEDS for Modeling Observers

DEDS can be considered as very suoitable tools for modeling observers. In particular, in the
manipulation observer domain, there is a need to recognize and report on distinct and discrete
visual states, which might represent manipulation tasks and/or sub-tasks. The observer should
have the ability to state a symbolic description of the current manipulation agent action. The
coarse definition of DEDS states provide a means for such symbolic state descriptions.

The definition for observers and the observer construction process for discrele event systems
are very coherent with the requirements for an autonomous robotic observer. The purpose of
DEDS observers is to be able to reconstruct the system state, which is exactly the requirements
for a visual observer, which needs to recognize, report and possibly aci, depending on the visual
manipulation state. The notions of controllable actions is easily mapped to some tracking and
repositioning procedures that the robotic observer will have to undertake in order to “see” the
scene from the “best” viewing position as the agent under observation moves over time. The
actions which the observer robot might need to perform, depends on the sequence of “observable”
events and the reconstructed state path.

Event description in a visual observer is possibly a combination of different 2-D and 3-D visual
data. The visual primitives used in an observer domain could be motion primitives, matching
measures, object identification processes, structure and shape parameters and/or a number of
other visual cues. The problem with the DEDS skeleton is that it does not allow for smooth state
changes under uncertainty in recovering the events. We describe in the next sections techniques

76

that make the transition from a DEDS skeleton into a working hybrid observer for a moving
manipulation agent. Stability and stabilizability issues are resolved in the visual observer domain
by supplying suitable control sequences to the observer robot at intermittent points in time in
order to “guide” it into the “desirable” set of visual states.

14.2 State Modeling and Observer Construction

Manipulation actions can be modeled efficiently within a discrete event dynamic system frame-
work. It should be noted that we do not intend to discretize the workspace of the manipulating
robot hand or the movement of the hand, we are merely using the DEDS model as a high level
structuring technique to preserve and make use of the information we know about the way in
which each manipulation task should be performed, in addition to the knowledge about the phys-
ical limitations of both the observer and manipulating robots. The high-level state definition
permits the observer recognize and report on symbolic descriptions of the task and the physical
relationships under observation. We avoid the excessive use of decision structures and exhaustive
searches when observing the 3-1) world motion and structure.

A bare-bone approach to solving the observation problem would have been to try and visually
reconstruct the full 3-D motion parameters of the robot hand, which would have more than six
degrees of freedom, depending on the number of fingers and/or claws and how they move. The
motion and shape or structure of the different objects should also be recovered in 3-1, which is
complicated especially if some of them are non-rigid bodies. That process should be done in real
time while the task is being performed. A simple way of tracking might be to try and keep a fixed
geometric relationship between the observer camera and the hand over time. However, the above
formulation is inefficient, unnecessary and for all practical purposes infeasible to compute in real
time. In addition, that formulation does not provide any kind of interpretation for the meaning of
the scene evolution, nor does it allow for any symbolic recognition for the task under observation.
The limitation of the observer reachability and the extensive computations required to perform
the visual processing are motives behind formulating the problem as a hierarchy of task-oriented
observation modules that exploits the higher-level knowledge about the existing system, in order
to achieve a feasible mechanism of keeping the visual process under supervision.

14.2.1 State Space Modeling

We do a coarse quantization of the visual manipulation actions which allows modeling both con-
tinuous and discrete aspects of the manipulation dynamics. State transitions within the manipu-
lation domain are asserted according to probabilistic models that determine at different instances
of time whether the visual scene under inspection has changed its state within the discrete event
dynamic system state space. Mapping the desired visnal states to a DEDS skeleton is a straight
forward procedure. We attach a DEDS automaton state to each meaningful visual state within
a manipulation action. The quantization threshold depends on the application requirement. In
other words, the state space can be expanded or contracted depending on the level of accuracy
required in reporting and observing. A surgical operation step, performed by a robotic end ef-

7

fector, will obviously require an observer that reports (and possibly control the effector within a
closed-loop visual system) with extreme precision. The observer for a robotic manipulator whose
task is to pile up heaps of waste would, most likely, report in a crude fashion, thus needing a small
number of states. The quantization threshold depends heavily on the nature of the task and the
application requirements. The DEDS formulation is flexible, in the sense that it allows different
precisions and/or state space models depending on the requirements.

The task of building DEDS automaton skeletons for observer agents can be performed either
manually or automatically. In the manual formation case, the designer would have Lo draw the
automaton model that best suits the task(s) under observation and depending on the application
requirements and implement the code for the state machine. Automatic construction of the state
machine could be done by having a learning stage [117,118] in which a mapping module would
form the automaton. This is performed before the actual observation process is invoked. The idea
is to supply the module with sets of possible sequences in the form of strings of a certain language
that the DEDS automaton should minimally accept. The language could be either supplied by
an operator, in which case, the resulting automaton performance depends on the relative skill
of the operator, or through showing the module a sequence of visual actions and labeling those
actions appropriately. The language strings should also be accompanied by a sel of transitional
conditions as event descriptions. The module would then produce the minimal DEDS automaton,
complete with event and state descriptions that accepts the language.

We next discuss building the manipulation model for some simple tasks, then we proceed to
develop the observer for these tasks. Formulating the models for the state transitions, the inter-
state continuous dynamics and recovering uncertainty will be left for sections 4 and 5 which deal
with the different uncertainty levels and event identification mechanisms,

14.2.2 Building the Model

The ultimate goal of the observation mechanism is to be able to know at all (or most) of the

time what is the current manipulation process and what is the visnal relationship between the
hand and the object. The fact that the observer will have to move in order Lo keep track of
the manipulation process, makes one think of the stabilizability principle for general DEDS as a
model for the tracking technique that has to be performed by the observer’s camera.

In real-world applications, many manipulation tasks are performed by robots, including, but
not limited to, lifting, pushing, pulling, grasping, squeezing, screwing and unscrewing of machine
parts. Modeling all the possible tasks and also the possible order in which they are to be performed
is possible to do within a DEDS state model. The different hand /object visual relationships for
different tasks can be modeled as the set of states X. Movements of the hand and object, either
as 2-D or 3-D motion vectors, and the positions of the hand within the image frame of the
observer’s camera can be thought of as the events set I' that causes state transitions within the
manipulation process. Assuming, for the time being, that we have no direct control over the
manipulation process itself, we can define the set of admissible control inputs U/ as the possible
tracking actions that can be performed by the hand holding the camera, which actually can alter
the visual configuration of the manipulation process (with respect to the observer's camera).

78

Figure 37: A Model for A Grasping Task

Further, we can define a set of “good” states, where the visual configuration of the manipulation
process enables the camera to keep track and to know the movements in the system. Thus, it
can be seen that the problem of observing the robot reduces to the problem of forming an output
stabilizing observer (an observer that can always return to a set of “good"” visual states) for the
system under consideration.

It should be noted that a DEDS representation for a manipulation task is by no means unique,
in fact, the degree of efficiency depends on the designer who builds the model for the task,
testing the optimality of & visual manipulation models is an issue that remains to be addressed.
Automating the process of building a model was discussed in the previous section. As the observer
identifies the current state of a manipulation task in a non ambiguous manner, it can then start
using a practical and efficient way to determine the next state within a predefined set, and
consequently perform necessary tracking actions to stabilize the observation process with respect
to the set of good states. That is, the current state of the system tells the observer what o look
Jor in the next step.

e A Grasping Task

We present a simple model for a grasping task. The model is that of a gripper approaching an
object and grasping it. The task domain was chosen for simplifying the idea of building a model
for a manipulation task. It is obvious that more complicated models for grasping or other tasks
can be built. The example shown here is for illustration purposes.

As shown in Figure 37, the model represents a view of the hand at state 1, with no object in
sight, at state 2, the object starts to appear, at state 3, the object is in the claws of the gripper
and at state 4, the claws of the gripper close on the object. The view as presented in the figure

79

is a frontal view with respect to the camera image plane, however, the hand can assume any 3-D
orientation as so long as the claws of the gripper are within sight of the observer, for example, in
the case of grasping an object resting on a tilted planar surface. This demonstrates the continuous
dynamics aspects of the system. In other words, different orientations for the approaching hand
are allowable and observable. State changes occur only when the object appear in sight or when
the hand encloses it. The frontal upright view is used to facilitate drawing the automaton only. It
should be noted that these states can be considered as the set of good states I, since these states
are the expected different visual configurations of a hand and object within a grasping task.

States b and 6 represent instability in the system as they describe the situation where the hand
is not centered with respect to the camera imaging plane, in other words, the hand and /or object
are not in a good visual position with respect to the observer as they tend to escape the camera
view. These states are considered as “bad™ states as the system will go into a non-visual state
unless we correct the viewing position, The set X = {1,2,3,4,5,6} is the finite set of states, the
set E'={1,2,3,4} is the set of “good" states. Some of the events are defined as motion vectors
or motion vector probability distributions, as will be described later, that causes state transitions
and as the appearance of the ohject into the viewed scene. The transition from state 1 Lo state 2
is caused by the appearance of the object, The transition from state 2 to state 3 is caused by the
event Lhat the hand has enclosed the object, while the transition from state 3 Lo state 4 is caused
by the inward movement of the gripper claws. The transition from the set {1,2} to the set {5, 6}
is caused by movement of the hand as it escapes the camera view or by the increase in depth
between the camera and the viewed scene, that is, the hand moving far away from the camera.
The self loops are caused by either the stationarity of the scene with respect to the viewer or by
the continuous movement of the hand as it changes orientation bul without tending to escape
a good viewing position of the observer. In the next section we discus different techniques to
identify the events. The controllable events denoted by “: t" are the tracking actions required by
the hand holding the camera to compensate for the observed motion. Tracking lechniques will
later be addressed in detail. All the events in this automaton are observable and thus the system
can be represented by the triple G = (X, X, T), where X is the finite set of states, ¥ is the finite
set of possible events and T is the set of admissible tracking actions or controllable events,

It should be mentioned that this model of a grasping task could be extended to allow for error
detection and recovery. Also search states could be added in order to “look™ for the hand if it
is no where in sight. The purpose of construcling the system is to develop an observer for the
automaton which will enable the determination of the current state of the system at intermittent
points in time and further more, enable us to use the sequence of events and control to “guide”
the observer into the set of good states E and thus stabilize the observation process. Disabling the
tracking events will obviously make the system unstable with respect Lo the set F = {1,2,3,4)
(can’t get back to it), however, it should be noted that the subset {3,4} is already stable with
respect to E regardless of the Lracking actions, that is, once Lthe system is in state 3 or 4, it will
remain in £. The whole system is stabilizable with respect to £, enabling the tracking events
will canse all the paths from any state to go through E in a finite number of transitions and then
will visit E infinitely often.

80

1523456

Figure 38: An Observer for the Grasping System

14.2.3 Developing the Observer

In arder to know the current state of the manipulation process we need to observe the sequence
of events occurring in the system and make decisions regarding the state of the automaton, state
ambiguities are allowed to occur, however, they are required to be resolvable after a bounded
interval of events. An observer, have to be constructed according to the visual system for which
we developed a DEDS model. The goal will be to make the system a stabilizable one and/or
construct an observer to satisfy specific task-oriented visual requirements that the user may specify
depending on the nature of the process. It should be noticed that events can be asserted with a
specific probability as will be described in the sections to come and thus state transitions can be
made according to pre-specified thresholds that compliments each state definition. In the case of
developing ambiguities in determining current and future states, the history ol evolution of past
event probabilities can be used to navigate backwards in the observer automaton till a strong
match is perceived, a fail state is reached or the initial ambiguity is asserted.

As an example, for the model of the grasping task, an observer can be formed for the system
as shown in Figure 38. IL can be easily seen that the system can be made stable with respect to
the set Iy (The system always returns to that set).

At the beginning, the state of the system is totally ambiguous, however, the observer can be
“guided” to the set Eg consisting of all the subsets of the good states E as defined on the visual
system model. It can be seen that by enabling the tracking event from the state (5, 6) to the
state (1, 2), all the system can be made stable with respect to Ey. The singleton states represent
the instances in time where the observer will be able to determine without ambiguity the current
state of the system.

In the next section we shall elaborate on defining the different events in the visual manipulation
system and discuss different techniques for event and state identification. We shall also introduce a
framework for computing the uncertainty in determining the observable visual events in the system
and a method by which the uncertainty distribution in the system can be used to efficiently keep

81

Figure 39: Different Views of the Lord Gripper

Figure 40: A Grasping Task : As seen by the observer's camera

track of the different observer states and to navigate in the observer automaton.

14.2.4 Examples

Experiments were performed to observe the robot hand. The Lord experimental gripper is used
as the manipulating hand. Dillerenl views of the gripper are shown in Figure 39. Tracking is
performed for some features on the gripper in real time. The visual tracking system works in real
time and a position control vector is supplied to the observer manipulator.

Some visual states for a grasping task using the Lord gripper, as seen by the observer camera,
is shown in figure 40. The sequence is defined by our model, and the visual states correspond to
the gripper movement as it approaches an object an then grasps it.

The full system is implemented and tested for some simple visual action sequences. One such
example is shown in figure 41. The automaton encodes an observer which tracks the hand by

82

Figure 41: A Model for a Simple Visual Sequence

keeping a fixed geometric relationship between the observer’s camera and the hand as so long as
the hand does not approach the observer’s camera rapidly. In that case, the observer tends to
move sideways, that is, dodge and start viewing and tracking from sideways. It can be thought
of as an action to avoid collision, due to the fact that the intersection of the workspaces of both
robots is not empty. State 1 represents the visual situation where the hand is in a centered viewing
position with respect to the observer and viewed from a [rontal position. State 2 represents the
hand in a non-centered position and tending to escape the visual view, but not approaching
the observer rapidly. State 3 represents a “dangerous™ situation as the hand has approached
the observer rapidly. State 4 represents the hand being viewed from sideways, and the hand is
centered within the imaging plane.

After having defined the states, the events causing state transitions can be easily described.
Event ¢; represents no hand movements, evenl ey represents all hand movements in which the
hand does not approach the camera rapidly. Event e3 represents a large movement towards the
observer. Events ¢4 and e; are controllable tracking events, where e4 always compensates for eq
in order to keep a fixed 3-D relationship and e5 is the “dodging” action where the observer moves
to start viewing from sideways, while keeping the hand in a centered position.

The events can thus be defined precisely as ranges on the recovered world motion parameters.
For example, ez can be defined as any motion Vz > d.. Event ¢y is defined as any motion such
that :

—thI"A’SE:/\—tySVYSfy/\—f:SVzS‘-z

It should be noted that defining e; in this manner helps a lot in suppressing noise. Having
defined the events, the task reduces to computing the relevant areas under the distribution curves
for the varions 3-1) motion parameters and computing the probabilities for the ranges of e, e;
and es at states | and 4. State transitions is asserted and reported when the probability value
exceeds a preset threshold. States 1 and 4 are considered to be the set of stable states, by enabling
the tracking events e4 and e5 the system can be made stable with respect to that set.

The low level visual feature acquisition is performed on the MaxVideo pipelined video processor
at frame rate. The state machine resides on a Sun SparcStation 1. The Lord gripper is mounted

83

Figure 42: 3-D Formulation for Stationary Scene/Moving Viewer

on a PUMA 560 arm and the observer’s camera is mounted on a second PUMA 560,

14.3 Identifying Motion Events

We use the image motion to estimate the hand movement. This task can be accomplished by
either feature tracking or by computing the full optic low. The image flow detection technique
we use is based on the sum-of-squared-differences optic flow. The sensor acquisition procedure
(grabbing images) and uncertainty in image processing mechanisms for determining features are
factors that should be taken into consideration when we compute the uncertainty in the optic
flow.

One can model an arbitrary 3-D motion in terms of stationary-scene/moving-viewer as shown
in Figure 42. The optical flow at the image plane can be related to the 3-D world as indicated by
the following pair of equations for each point (z,y) in the image plane [134] :

Vg = {z% - %} 4 [Iygx — (1 +ﬂ?2) Qy -I—yﬂz]
vy = {y? = L/Y} + [(1 + yz) Qx — zyldy — sz]

where v, and v, are the image velocity at image location (z,y), (Vx, Vy, Vz) and (Q2x, Qy,Qz)
are the translational and rotational velocity vectors of the observer, and Z is the unknown distance
from the camera to the object. In this system of equations, the only knowns are the 2-D vectors
vy and vy, il we use the formulation with uncertainty then basically the 2-D vectors are random
variables with a known probability distribution. A number of techniques can be used to linearize

the system of equations and to solve for the motion and structure parameters as random variables
[14,15,190].

14.4 Modeling and Recovering 3-D Uncertainties

The uncertainty in the recovered image flow values results from sensor uncertainties and noise and
from the image processing techniques used to extract and track features. We use a static camera

84

1 L
o e
o e e e
s 7 : / =]
= s | |
el s 1 z 7
b ¥ 4 v I e [
L / = I o {

= ==
0 AL L

an oy

v v va
e 00 W0 180 200 (00 T00 400 A0 oo WOSS WO jeuim ae

Figure 43: Cumulative Density Functions of the Translational Velocity

calibration technique to model the uncertainty in 3-D to 2-D feature locations. The strategy used
to find the 2-D uncertainty in the features 2-I) representation is to utilize the recovered camera
parameters and the 3-D world coordinales (&, Yu, 2w) of a known set of points and compute the
corresponding pixel coordinates, for points distributed throughout the image plane a number of
times, find the actual feature pixel coordinates and construct 2-D histograms for the displacements
from the recovered coordinates for the experiments performed. The number of the experiments
giving a certain displacement error would be the z axis of this histogram, while the z and y
axis are the displacement error. The three dimensional histogram functions are then normalized
such that the volume under the histogram is equal to 1 unit volume and the resulting normalized
function is used as the distribution of pixel displacement error.

The spatial uncertainty in the image processing technique can be modeled by using synthesized
images and corrupting them, then applying the feature extraction mechanism to both images and
computing the resulting spatial histogram for the error in finding features. The probability density
function for the error in finding the flow vectors can thus be computed as a spatial convolution of
the sensor and strategy uncertainties. We then eliminate the unrealistic motion estimates by using
the physical (geometric and mechanical) limitations of the manipulating hand. Assuming that
feature points lie on a planar surface on the hand, then we can develop bounds on the coeflicients
of the motion equations, which are second degree functions in z and y in three dimensions,
ve = filz,y) and vy = fa(z,y).

The 2-D uncertainties are then used to recover the 3-D uncertainties in the motion and struc-
ture parameters. The system is linearized by either dividing the parameter space into three
subspaces for the translational, rotational and structure parameters and solving iteratively or us-
ing other linearization Lechniques and/or assumptions to solve a linear system of random variables
[14,15,21,190,194,198]. As an example, the recovered 3-D translational velocity cumulative density
functions for an actual world motion, Vy = 0 em, V3 = 0 em and Vz = 13 em, is shown in figure
43. 1t should be noted that the recovered distributions represents a fairly accurate estimation of
the actual 3-D motion.

85

Figure 44: Observer State and View (1)

87

(9) (10)

(12)

Figure 45: Observer State and View (2)

ot

Thus, we have proposed a new approach to solving the problem of observing a moving agent.
Our approach uses the formulation of discrete event dynamic systems as a high-level model for
the framework of evolution of the visual relationship over time. The proposed formulation can be
extended to accommodate for more manipulation processes. Increasing the number of states and
expanding the events set would allow for a variety of manipulating actions.

15 Sensing for Inspection of Machine Parts

This work addresses the application of discrete event dynamic systems (DEDS) for autonomous
sensing and inspection as part of the reverse engineering process. A dynamic recursive context for
DEDS is presented and its usage for managing a complex hybrid system which has continuous,
discrete and symbolic aspects is illustrated. We suggest that the dynamic recursive conLexl is
aptly suited to controlling and observing the active inspection of machined parts using such a
hybrid system.

Reverse engineering is the process of constructing an accurate representation from sensed data.
It can be represented by a closed loop system that consists of four main modules:

e Sensing
e CAD Modeling
e Manufacturing

e [nspection

This closed loop system is the framework we used to develop an integrated CAD/CAM /sensing
system for ingpection and reverse engineering. The process starts by constructing an initial CAD
model using 2-d and 3-d vision, then the inspection module uses this model to drive a coordinate
measuring machine (CMM). The results are used to increase the accuracy of the model. Additional
sensing iterations could be made until the desired accuracy is obtained. Figure 46 shows this closed
loop system.

Most research in reverse engineering ([172, 141, 99, 100, 101, 49, 50]) concentrates on the
sensing and fitting techniques required. Hsieh[103] describes a system which does sculptured
surface reconstruction with a CMM. The focus of the work is on path planning and surface
fitting. If errors occur while gathering data, the system aborts and must be restarted. Van Thiel
[200] describes an interactive CMM inspection system. The user is included as part of the control
loop, and can abort inspections and call for explorations of particular features. Our work describes
an approach that automatically gathers the sense data, processes it, and makes decisions based
upon it for reverse engineering.

We usge a recursive dynamic strategy for exploring machine parts. A discrete event dynamic
system (DEDS) framework is designed for modeling and structuring the sensing and control prob-
lems. The dynamic recursive context for finite stale machines (DRFSM) is a DEDS representation
tailored to the recursive nature of the mechanical parts under consideration.

89

DRFSM is particularly useful for controlling the inspection module, and this has been an
important aspect of our research.

-~

Figure 46: Closed loop system f[or reverse engineering

15.1 Modeling and Constructing an Observer

A DEDS framework is used to model the tasks that the autonomous observer system executes,
This model is used as a high level structuring technique Lo preserve and make use of the informa-
tion we know about the way in which a mechanical part should be explored. The state and event
description is associated with different visual cues: for example, appearance of objects, specific 3-
D movements and structures, interaction between the touching probe and part, and occlusions. A
DEDS observer serves as an intelligent sensing module that utilizes existing information about the
tasks and the environment to make informed tracking and correction movements and autonomous
decisions regarding the state of the system.

To be able to determine the current state of the system we need to observe the sequence of
events occurring in the system and make decisions regarding the state of the automaton. State
ambiguities are allowed to occur, however, they are required to be resolvable after a bounded
interval of events. In a strongly output stabilizable system, the state of the system is known at
bounded intervals and allowable events can be controlled (enabled or disabled) in a way that
ensures return in a bounded interval to one of a desired and known set of states.

One of the objectives is to make the system strongly output stabilizable and/or construct an
observer to satisfy specific task-oriented visual requirements. Many 2-D visual cues for estimating
3-D world behavior can be used. Examples include: image motion, shadows, color and boundary
information. The uncertainty in the sensor acquisition procedure and in the image processing
mechanisms are taken into consideration to compute the world uncertainty.

90

15.2 Experiments

201 Layer
L

ez o=

Pumg Comnands ==
%f e
G 212D Layee | ————n

Lo freum ahading Alphs! Modelies

L,y x) point infomating

Coutrol Sigaais O— O—O—O

Figure 47: Inspection system overview

In conducting our experiments, we use a B/W CCD camera mounted on a Puma 560 robol arm,
that observe and guide the interaction between the CMM probe and the machined part (see
Figure 47.) In order for the state machine to provide control, it must be aware of state changes
in the system. As inspection takes place, the camera supplies images that are interpreted by a
set of 2D and 3D vision processing algorithms and used to drive the DRIF'SM. These algorithms
are described in greater detail in other publications [188, 179, 181, 182, 180, 184], but include
thresholding, edge detection, region growing, stereo vision, etc. The robot arm is used to position
the camera in the workplace and move in the case of occlusion problems.

The object of these experiments was to test the operation of the visual system with the state
machine. Two facets of this were the generation of an initial model from stereo vision and the
generation of events that describe a probe’s relationship to features in that model.

This stereo process used the Puma arm to gather pairs ol images. The resulting model was
used to determine feature relationships used in the DEDS controller. The models shown are from
this initial visual inspection.

The event generation method, consisting of 2-d image processing routines, was used to detect
the relationship of a simulated (hand-held) CMM probe to the features in the initial model. These
events were processed by the controller, which output text messages guiding the experimenter to
move the probe or indicate that a touch had occurred.

The automaton used in the environment is shown in Figure 48. This machine has the following
states:

91

=1 T Lol

Figure 48: Inspection Environment Window

A: The initial state, waiting for the probe to appear.

B: The probe appears, and waiting for it to be close. Here, “close” ix a measure of the
distance between the probe and the current feature, since it depends on the level of the
recursive structure. For example, the distance at the first level, which represents the outer
contours or features, is larger than that of the lower levels.

C: Probe is close, but not an feature.

D: The probe appears to be on feature in the image, and waiting for physical touch indicated
from the CMM machine.

E: Physical touch has happened (and the CMM measurements for the feature parameters
are recorded and saved for updating the CAD model.) If the current feature represents a
closed region, the machine goes one level deeper to get the inner features by a recursive call
to the initial state after changing the variable transition parameters. If the current feature
was an open region, then the machine finds any other features in the same level.

F: This state is to solve any vision problem happens during the experiment. For example,
if the probe is occluding one of the features, then the camera position can be changed to

solve this problem.

ERROR: There is a time limit for each part of this experiment. If for any reason, one of
the modules doesn’t finish in time, the machine will go to this state, which will report the
error and terminate the experiment.

92

Figure 49: Experimental Setup

15.2.1 Experimental results, Automated Bracket Inspection

A metal bracket was used in the experiment to test the inspection automaton. The piece was
placed on the inspection table within view of the camera (see Figure 49).

The machine was brought on line and execution begun in State A, the start state. After
initiating the inspection process, the DRIFSM transitioned through states until the probe reached
the bracket boundary. The state machine then called for the closed region to be recursively
inspected until finally, the hole was explored and the machine exited cleanly. The sequence is
shown in Figure 52.

The original part and the resulting reverse-engineered part are shown in Figures 50 (wire-
frames) and 51 (rendered images). Notice that the two side holes and a portion of the bracket
were not sensed correctly, as a simple strategy was used to sense from only one direction. In
the next experiment, a more complicated model is sensed with a more sophisticated sensing and

modeling strategy.

15.2.2 Experimental Results, Cover Plate

A second experiment was run in a similar fashion, using a part similar to the fuel pump cover from
a Chevrolet engine. This piece offers interesting features and has a complex recursive structure
which allowed us to test the recursive nature of the state machine.

The sensing strategy used here was more robust than in the previous experiment. Detected
feature contours were sensed with stereo vision and used to build up a feature-based a_1 model.
This model was then used to semi-auntomaltically machine a reproduction of the part. The original

Figure 50: Original and Reverse-Engineered part models

Figure 51: Original and reproduction

94

=1-1-]-

State A: NoProbe State B: ProbeFar State C: ProbeClose State 13: ProbeOnFeature

™

State E: TouchedFeature State A: NoProbe State B: ProbeFar State C: ProbeClose

State D: ProbeOnFeaiure Smte E: Touchedbeature

Figure 52: Bracket Sequence

ii=
on

Figure 53: Original and Vision-Reverse Engineered Models

and reverse-engineered wireframe models are shown in Figures 53. A photograph of the original
and reproduction is shown in 54. For more detail on the sensing strategy, please see [188].

The inspection sequence corresponding to this experiment is shown in Figure 55. Shown
there, the DRFSM transitions correctly through the inspection of the outside profile (depth of
recursion=0), a hole (1), a profile pocket (1), a hole (2), and another hole (1).

16 Conclusions

We have reviewed the Discrete Event Systems area, presented several frameworks used in DES
modeling, and discussed the mathematical basis for some of them. Some evaluation criteria for
these frameworks were also discussed.

A software environment system was developed for simulating, analyzing, synthesizing, moni-
toring, and controlling complex discrete event and hybrid systems. We have also presented two
problems related to robotics and automation for which discrete event and hybrid systems formu-
lation play a significant role in the solution.

96

Figure 54: Original and Vision-Reverse Engineered Parts

References

1]

(2]

51

6]

T. Agerwala, “Putting Petri nets to work,” in Modeling and Control of Automated Man-
ufacturing Systems (A. A. Desrochers, ed.), Washington, D. C.: IEEE Computer Society
Press, 1990.

R. Akella, O. Maimon, and S. Gershwin, “Value function approximation via linear program-
ming for FMS scheduling,” International Journal of Production Research, vol. 28, no, &,
pp. 1459-1470, 1990,

R. Y. Al-Jaar and A. A. Desrochers, “A survey of Petri nets in flexible manufacturing
systems,” in Proceedings of 1988 IMACS Conf., July 1988.

R. Y. Al-Jaar and A. A. Desrochers, Advances in automation and robotics, vol. 2, ch. Petri
nets in automation and manufacturing, pp. 153-225. JAI Press, 1990.

H. Alla, P. Ladet, J. Martinez, and M. Silva, “Modeling and validation of complex systems
by colored Petri nets application to a flexible manufacturing system,” in Advances in Petri
Nets 1984, vol. 188 of Lecture Notes in Computer Seience, pp. 15-31, Berlin: Springer-
Verlag, 1984.

J. Aloimonos and A. Bandyopadhyay, “Active Vision”. In Proceedings of the 1*' Interna-

tional Conference on Computer Vision, 1987,

97

State A: NoProbe State B: ProbeFar State C: ProbeClose State D: ProbeOnFeature

State E: TouchedFeature State A: NoProbe State B: ProbeFar State C: ProheClose

State 1): ProbeOnFeature State E: TouchedFeature State A: NoProbe State B: ProbeFar

State C: ProbeClose State [): ProbeUOnFeature State E: Touchedleature State A: NoProbe

State [: Probelar State C: ProbeClose State [3: ProbeOnFeature State Ii: TouchedFeature

State A: NoProbe State H: Probelar State C: ProbeClose State I): ProbeOnFeature

Ciata I3 Masink adles betcin

[7] P. Anandan, “A Unified Perspective on Computational Techniques for the Measurement of
Visual Motion™. In Proceedings of the 1% International Conference on Computer Vision,

1987.

[8] P. J. Antsaklis and K. M. Passino, eds., An Introduction to Intelligent and Autonomous
Control. Boston: Kluwer Academic Publishers, 1993,

[9] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Algebraic and stochastic analysis of
timed discrete event systems. Wiley, 1991.

[10] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization and Linearity.
Wiley, 1992,

[11] F. Baccelli and Z. Liu, “On the execution of parallel computations on multiprocessor
systems—a queuneing theory approach,” Journal of the ACM, vol. 27, no. 32, pp. 373-414,
1990.

[12] Baiv, J. L., Auua, H., AND Davip, R. Hybrid petri nets. In European Control Conference
(Grenoble, France, 1991).

[13] R. Bajesy, “Active Perception”, Proceedings of the IEEE, Vol. 76, No. 8, August 1988,

[14] R. Bajcsy and T. M. Sobh, Observing a Moving Agent. Technical Report MS-CIS-91-01 and
GRASP Lab. TR 247, Computer Science Dept., School of Engineering and Applied Science,
University of Pennsylvania, January 1991.

[15) BaJsesy, R., aND SoBH, T. A framework for observing a manipulation process, Grasp Lab
216, University of Pennsylvania, Philadelphia, PA, June 1990. Also MS-CIS-90-34.

[16] A. D. Baker, T. L. Johnson, D. . Kerpelman, and H. A. Sutherland, “GRAFCET and SFC
as factory antomation standards,” in Proceedings of 1987 American Control Conference,

(Minneapolis, MN), pp. 1725-1730, June 1987,
[17] K. Baker, Introduction to sequencing and scheduling. Wiley, 1974.

[18] BaLEMmi, S. Control of Discrete Event Systems: Theory and Application. PhD thesis, Au-
tomatic Control Laboratory, Swiss Federal Institute of Technology (ETH), Zurich, Switzer-
land, May 1992.

[19] A. Ballakur and H. Steudel, “Integration of job shop control systems: A state—of-the-art
review,” Journal of Manufacturing Systems, vol. 3, no. 1, pp. 71-80, 1984,

[20] J. Banks and J. S. Carson, Discrete-Event System Simulation. Englewood Cliffs, NJ:
Prentice-Hall, 1984.

[21] J. L. Barron, A. D. Jepson and J. K. Tsotsos, “The Feasibility of Motion and Structure
from Noisy Time-Varying lmage Velocity Information”, International Journal of Computer
Vision, December 1990,

99

[22] D. D. Bedworth, M. R. Henderson, and P. M. Wolfe, Computer-Integrated Design and
Manufacturing. McGraw-Hill, 1991.

[23] R. Bellman and S. Dreyfus, Applied dynamic programming. Princeton, NJ: Princeton Univ,
Press, 1962,

[24] M. Ben-Ari, Principles of concurrent programming. Prentice—Hall, 1982.

[25] S. Bennett, Real-time computer control: an introduction. Englewood Cliffs, NJ: Prentice-
Hall, 1988.

[26] A. Benveniste, P. Le Guernic, and C. Jacquemot, “The SIGNAL software environment for
real-time system specification, design, and implementation,” in Proceedings of 1989 IEEE
Work. CACSD, Dec. 1989.

[27] J. Billingsley, Controlling with computers: control theory and practical digital systems.
McGraw-Hill, 1989.

[28] J. T. Black, The Design of the Factory with a Future. McGraw-Hill, 1991.
[29] G. V. Bochmann, Distributed System Design. Springer—Verlag, 1983,

(30] P. Bratley, B. Fox, and L. Schrage, A Guide to Simulation. New York: Springer—Verlag,
2nd ed., 1987.

[31] Y. Brave and M. Heymann, “Control of discrete event systems modeled as hierarchical state
machines,” Tech, Rep. #9012, Center for Intelligent Systems, Technion - Israel Institute of
Technology, Haifa, Israel, Mar, 1991,

[32] P. Brémaud, Point Processes and Queues-A Martingale approach. Springer—Verlag Series
in Statistics, New York: Springer—Verlag, 1981,

[33] W. L. Brogan, Modern Clontrol Theory. Englewood Cliffs, NJ: Prentice-Hall, 3rd ed., 1991.

(34] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of communicating sequential
processes,” Journal of the ACM, vol. 31, no. 3, pp. 560-599, 1984.

[35] A. Burns and A. Waellings, Real-Time Systems and Their Programming Languages.
Addison—Wesley, 1990.

[36] P. J. Burt, et al., “Object Tracking with a Moving Camera”, IEEE Workshop on Visual
Motion, March 1989.

[37] J. A. Buzacott and D. D. Yao, “Flexible manufacturing systems: a review of analytical
models.” Management Science.

[38] T. Cao and A. C. Sanderson, “Task decomposition and analysis of assembly sequence plans
using Petri nets,” in Proceedings of 3rd Int. Conf. CIM, pp. 138-147, May 1992.

100

[39] X.-R. Cao, “On a sample performance function of Jackson queueing networks,” Operations
Research, vol. 36, pp. 128-136, 1988.

[40] Xi-Ren Cao, “The Predictability of Discrete Event Systems”, Proceedings of the 27** Con-
ference on Decision and Control, December 1988,

[41] X.-R. Cao and Y. Dallery, “An operational approach to perturbation analysis of closed
queueing networks,” in Proceedings of 1986 American Control Conference, 1986.

[42] C. G. Cassandras, “Optimizing recirculation in flexible manufacturing systems,” in Pro-
ceedings of 2nd ORSA/TIMS Conf. Flezible Manufacturing Systems: Operations Research
Models and Applications (K. E. Stecke and R. Suri, eds.), pp. 381-392, Elsevier, 1986.

[43] C.G. Cassandras, “On the duality between routing and scheduling systems with finite buffer
space,” in Proceedings of 31st IEEE Conference on Decision and Control, pp. 2364-2365,
Dec. 1992,

[44] C. G. Cassandras, Discrete Fvent Systems: Modeling and Performance Analysis. The Aksen
Associates Series in Electrical and Computer Engineering, Homewood, IL 60430: Aksen
Associates Incorporated Publishers, 1993,

[45] C. G. Cassandras and J. I. Lee, “Applications of perturbation techniques to optimal resource
sharing in discrete event systems,” in Proceedings of 1988 American Control Conference,
(Atlanta, GA), pp. 450-455, 1988,

[46] U. Chandrasekaran and S. Sheppard, “Discrete event distributed simulation—a survey,” in
Proceedings of Conference on Methodology and Validation, pp. 32-37, 1987.

[47] P. R. Chang, Parallel Algorithms and VLST architectures for robotics and assembly schedul-
ing. PhD thesis, Purdue Univ., West Lafayette, IN, Dec, 1988,

[48] F. Chaumette and P. Rives, “Vision-Based-Control for Robotic Tasks”, In Proceedings of the
IEEE International Workshop on Intelligent Motion Control, Vol. 2, pp. 395-400, August
1990.

[49] CHEN, Y., AND MEDIONI, G. Object modelling by registration of multiple range images.
International Journal of Image and Vision Computing 10, 3 (Apr. 1992), 145-155.

[50] CHEN, Y., AND MEDIONI, G. Integraling multiple range images using triangulation. In
Image Understanding Workshop (April 1993), Defense Advanced Research Projects Agency,
Software and Intelligent Systems Office, pp. 951-958.

[51] E. K. P. Chong and P. J. Ramadge, “Convergence of recursive optimization algorithms
using 1PA derivative estimates,” in Proceedings of 1990 American Control Conference, (San
Diego, CA), May 1990.

101

[52] CoromBo, A. W., MARTINEZ, J., AND CARELLI, R. Formal validation of complex pro-
duction systems using coloured petri nets. In Proc. 1994 IEEE Int. Conj. Robotics and
Automation (Can Diego, CA, USA, May 1994), IEEE, pp. 1713-1718.

[63] S. Connolly, Y. Dallery, and S. B. Gershwin, “A real-time policy for performing setup
changes in a manufacturing system,” in Proceedings of 81st IEEE Conference on Decision
and Control, pp. 764-770, Dec. 1992.

[64] A. E. Conway and N. D. Georganas, Queuecing Networks-Ezact Computational Algorithms:
A Unified Theory Based on Decomposition and Aggregalion. Cambridge, MA: The MI'T
Press, 1989.

[55] B. Darakanada, “Simulation of manufacturing process under a hierarchical control algo-
rithm,” Master’s thesis, MIT, May 1989.

[56] DaviD, R., AND ALLA, H. Petri Nets and Grafeet. Hermes Pub, Paris, France, 1989.

[67] R. David and H. Alla, Petri Nets and Grafcet: Tools for modelling discrete event systems.
New York: Prentice—Hall, 1992.

[68] E. V. Denardo, Dynamic Programming: Models and Applications. Englewood Cliffs, N.J:
Prentice—Hall, 1982,

(59] M. J. Denham and A. J. Laub, eds., Advanced Computing Concepts and Techniques in
Control Engineering, vol. 47 of Computer and Systems Sciences. Springer—Verlag, 1988,

[60] P. Deransart, M. Jourdan, and B. Lohro, *A survey of attribute grammers part 1: Main
result on attribute grammars,” Tech. Rep. 485, INRIA, Jan. 1986.

[61] A. A. Desrochers, Modeling and Control of Automated Manufacturing Systems. New York:
[EEE Computer Society Press, 1990.

[62] R. L. Devaney, An Introduction to Chaotic Dynamical Systems. Menlo Park, California:
The Benjamin/Cummings Publishing Company, Inc., 1986.

[63] D. Dilts, N. Boyd, and H. Whorms, “The evolution of control architectures for automated
manulacturing,” Journael of Manufacturing Systems, vol. 10, no. 1, pp. 79-93, 1991.

[64] B. R. Donald, Error Detection and Recovery in Robotics, vol. 336 of Lecture Notes in Com-
puter Seience, Berlin: Springer—Verlag, 1989.

[65] S. Drees et al., Advances in Petri Nets 1987, ch. Bibliography of Petri nets, pp. 309-341.
Springer—Verlag, 1987.

[66] D. Dubois and K. E. Stecke, “Using Petri nets to represent production processes,” in Pro-
ceedings of 22nd IEEE Conference on Decision and Control, (San Antonio, TX), pp. 1062
1067, Dec. 1983.

102

[67] C. Dupont-Gatelmand, “A survey of flexible manufacturing systems,” Journal of Manufac-
turing Systems, vol. 1, no. 1, pp. 1-16, 1982,

[68] S. E. Elmaghraby, “The economic lot scheduling problem (ELSP): Review and extensions,”
Management Secience, vol. 24, pp. 587-598, 1978,

[69] M. Elzas, R. 1. Oren, and B. Zeigler, eds., Modelling an simulation methodology in ihe
artificial intelligence era. Amsterdam: North-Holland, 1986.

[70] W. Eversheim and P. Herrmann, “Recent trends in flexible automated manufacturing,”
Journal of Manufacturing Systems, vol. 1, no. 2, pp. 139-148, 1982,

[71] A. F. Famili, D. S. Nau, and S. H. Kim, eds., Artificial Intelligence Applications in Manu-
facturing. Menlo Park, California: AAAI Press / The MIT Press, 1992.

[72] W. Feller, An Introduction to Probability Theory and Its Applications. New York: Wiley,
2nd ed., 1971.

73] G. S. Fishman, Principles of Discrete Event Simulation. New York: John Wiley, 1987.

[74] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to NP-
Completeness. San Francisco, CA: Freeman, 1979,

[75] V. K. Garg and R. Kumar, “A state-variable approach for controlling discrete event systems
with infinite states,” in Proceedings of 1992American Control Conference, (Chicago, IL),
June 1992,

[76] GHaBRrl, M. K., AND LADET, P. Controlled continuous petri nets. In Proc. 1994 IEEE
Int. Conf. Robotics and Automation (Can Diego, CA, USA, May 1994), IEEE, pp. 7T88-793.

[77] P. Glasserman, “Derivalive estimates from simulation of continuous time Markov chains,”

tech. rep., AT&T Bell Labs, Holmdel, NJ, 1989.

[78] P. Glasserman, Gradient Estimation via Perturbation Analysis. Boston: Kluwer Academic

Publishers, 1991.

[79] P. Glasserman and Y. C. Ho, “Aggregation approximation for sensitivity analysis of multi-
class queueing networks,” Performance Analysis, vol. 10, pp. 295-308, 1989,

[80] M. Gondran and M. Minoux, Graphs and algorithms. New York: Wiley, 1986,

[81] W. B. Gong, W. Zhai, and Y. C. Ho, “Stochastic comparison algorithm for discrete opti-
mization with Monte Carlo estimation,” in Proceedings of 31st IEEFE Conference on Decision
and Control, pp. 795-802, Dec. 1992,

[82] G. Gordon, Handbook of operations research, ch. Simulation-computation. New York: Van
Nostrand, 1978.

103

[83] M. A. Harrison, Introduction to Switching and Automata Theory. New York: McGraw-Hill,
1965.

[84] J. Hervé, P. Cucka and R. Sharma, “Qualitative Visual Control of a Robot Manipulator”™.
In Proceedings of the DARPA Image Understanding Workshop, September 1990.

[85] F. S. Hiller and G. J. Lieberman, Introduction to Operations Research. Hoplden-Day,
4th ed., 1986.

[86] Y. C. Ho, “Adaptive design of feedback controllers for stochastic systems,” IEEE Transac-
tions on Automatic Control, vol. 10, pp. 367-368, July 1965.

[87] Ho, Y. Discrete event dynamical system and its application to manufacturing. In JFAC
Cong. Proc. (1981).

[88] Y. C. Ho, “System theory and operations research — a new fusion of mathematical modeling
and experimentation,” in Proceedings of Workshop on Intelligent Control 1985 (A. Saridis
and A. Meystel, eds.), (Troy, NY), pp. 35-37, Aug. 1985.

[89] Y. C. Ho, A Selected and Annotated Bibliography on Perturbation Analysis, vol. 106 of
Lecture Notes in Control and Information Science, pp. 217-224. Berlin: Springer—Verlag,
Aug. 1987.

[90] Y. C. Ho, “Recent developments in perturbation analysis,” Tech. Rep. CICS-P-209, CICS,
Brown Univ., Providence, Apr. 1990.

[91] Y. C. Ho, ed., Discrete Event Dynamic Systems: Analyzing Complezity and Performance
in the Modern World. New York: IEEE Press, 1991.

[92] Y. C. Ho, “Hierarchical production controls in a stochastic two-machine flowshop with a
finite internal buffer,” in Proceedings of 31st IEEE Conference on Decision and Control,
pp. 2068-2073, Dec. 1992.

[93] Y. C. Ho, “Performance Evaluation and Perturbation Analysis of Discrete Event Dynamic
Svstems”, IEEE Transactions on Automatic Control, July 1987.

[94] Y. C. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event Dynamic Systems, Boston:
Kluwer Academic Publishers, 1991.

[95] Y. C. Ho and J. Q. Hu, “An infinitesimal perturbation analysis algorithm for a multiclass
G/G/1 quene,” Operations Research Letters, vol. 9, pp. 35-44, 1990.

[96] C. A. R. Hoare, Communicating Sequential Processes. International Series in Computer
Science, Englewood Cliffs, NJ: Prentice-Hall International, 1985,

[97] G. Hoffmann, Discrete Event System Theory Applied to Manufacturing. PhD thesis, Stan-
ford, Information Systems Laboratory, Stanford University, CA, Dec. 1992.

104

[98] J. E. Hopcroft and J. D. Ullman, Introduction to Aulomnata Theory, Languages and Com-
putation. Addison-Wesley Series in Computer Science, Reading, Massachusetts: Addison-
Wesley, 1979.)

[99] HoppPE, H., DERosE, T., Ducuamp, T., McDoNALD, J., AND STUETZLE, W. Surface
reconstruction from unorganized points. In Computer Graphics, SIGGRAPH 92 (July
1992), vol. 26.

[100] HorrE, H., DERosE, T., Duchame, T., McDonNaALD, J., AND STUETZLE, W. Mesh
optimization. In Computer Graphics, SIGGRAPH *98 (Aug. 1993), vol. 27.

[101] HorpE, H., DEROSE, T., DucHAMP, T., MCDONALD, J., AND STUETZLE, W. Piecewise
smooth surface reconstruction. In Computer Graphics, SIGGRAPH 94 (1994).

[102] B. K. P. Horn and B. G. Schunck, “Determining Optical Flow", Artificial Intelligence, vol.
17, 1981, pp. 185-203,

[103] Hsien, Y. C. Reconstruction of sculptured surfaces using coordinate measuring machines.
Master’s thesis, Mechanical Engineering Department, University of Utah, June 1993.

(104] R. Hull and R. King, “Semantic database modeling: survey, applications, and research
issues,” ACM Computing Surveys, vol. 19, no. 3, pp. 201-260, 1987.

[105] InaN, K., AND VARAIYA, P. Finitely recursive process models for discrete event systems.
IEEE Trans. Autom. Control 33, 7 (July 1988), 626-639.

[106] K. Jensen, Coloured Petri Nets: A High Level Language for System Design and Analysis.
Berlin: Springer—Verlag, 1991.

[107] K. Jensen, ed., Application and Theory of Petri Nets 1992, vol. 616 of Lecture Notes in
Computer Science. Berlin: Springer—Verlag, 1992,

[108] K. Jensen and G. Rozenberg, eds., High-level Petri Nets: Theory and Applications. Berlin:
Springer-Verlag, 1991,

(109] B. Jiang, J. Black, and R. Duraisamy, “A review of recent developments in robot metrology,”
Journal of Manufacturing Systems, vol. 7, no. 4, pp. 339-357, 1988,

[110] J-F. Kao and . L. Sanders, “Impact of error recovery on the productivity of a unitary
assembly cell,” IEEFE Transactions on Robotics and Automation, vol. 8, no. 6, pp. 730-740,
1992,

[111]). Keilson, Markov chain models - rarity and exponentiality. Springer—Verlag, 1979.
[112] L. Kleinrock, Queueing Systems, vol. I: Theory. New York: Wiley, 1975.

[113] H. E. Koenig, Y. Tokad, and H. K. Kesavan, Analysis of Discrete Physical Systems. New
York: McGraw-Hill, 1967.

105

[114] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, 1979.

[115] P. Kozdk, “Methods of discrete event systems theory in Al real-time skills,” in Proceed-
ings of the IFIP Workshop on Dependability of Artificial Intelligence Systems DAISY_Y1
(G. H. Schildt and J. Retti, eds.), (Vienna, Austria), pp. 271-277, Elsevier, North-Holland,
Amsterdam, May 1991.

[116] P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification, and Adaptive
Control. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[117] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Teaching by showing : Generating robot programs
by visual observation of human performance”, 20t ISIR, 1989.

[118] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Design and implementation of a system that gen-
erates assembly programs from visual recognition of human action sequences”, IROS, 1990.

[119] A. Kusiak, ed., Intelligent Design and Manufacturing. New York: Wiley, 1992.

[120] S. Lafortune and E. Wong, “A state model for the concurrency control problem in database
management systems,” in Proceedings of 24th IEEE Conference on Decision and Control,
(Fort Lauderdale, FL), pp. 441-442, Dec. 1985.

[121] LavigNoON, J., AND SHOHAM, Y. Temporal automata. Dept. of Computer Science STAN-
(’S-90-1325, Stanford University, August 1990.

[122] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill series in
industrial engineering and management science, New York: McGraw-Hill, 2nd ed., 1991.

[123] C. Lee, “Fuzzy logic in control systems: fuzzy logic controller — part 1,” I[EEFE Transactions
on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 404-418, 1990.

[124] C. Lee, “Fuzzy logic in control systems: fuzzy logic controller — part 11,” JEEE Transactions
on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 419-435, 1990.

[125] A. M. C. Leeming, “A comparison of some discrete evenl simulalion languages,” Simuleller,
vol. 12, no. 1-4, pp. 9-16, 1981.

[126] J. K. Lenstra and A. H. G. R. Kan, “Scheduling theory since 1981: an annotated bibliog-
raphy,” Tech. Rep. 188/83, Mathematisch Centrum, Amsterdam, 1983.

[127] S.-T. Levi and A. K. Agrawala, Real-Time System Design. New York: McGraw-Hill, 1990.

[128] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-
Hall, 1981.

[129] Y. Li and W. M. Wonham, “Controllability and Observability in the State-Feedback Control
of Discrete-Event Systems”, Proc. 27" Conf. on Decision and Control, 1988.

106

[130] A. L. Liestman and R. H. Campbell, “A fault-tolerant scheduling problem,” IEEE Trans-
actions on Software Engineering, vol. 12, no. 11, pp. 1089-1095, 1986.

(131] F. Lin, On Controllability and Observability of Discrete Event Systems. PhD thesis, Uni-
versity of Toronto, Canada, 1987.

[132] F. Lin, “Robust and adaptive supervisory control of discrete event sysatems,” in Proceedings
of 1992 American Control Conference, (Chicago, IL), pp. 2804-2808, June 1992.

[133] F. Lin and W. M. Wonham, “Decentralized supervisory control of discrete-event systems,”
Tech. Rep. # 8612, Systems Control Group, Depertment of Electrical Engineering, Univer-
sity of Toronto, Canada, 1986.

[134] H. C. Longuet-Higgins and K. Prazdny, The interpretation of a moving Retinal Image, Proc.
Royal Society of London B, 208, 385-397.

[135] E. Lopez-Mellado and R. Alami, “A failure recovery scheme for assembly workeells,” in
Proceedings of 1990 International Conference on Roboties and Automation, pp. 702-707,
1990.

[136] J. M. Maciejowski, “Data structures and software tools for computer aided design of control
systems: a survey,” in IFAC' Workshop on CACSD, 1989.

[137] G. Margirier, “Flexible automated machining in france: Results of a survey,” Journal of
Manufacturing Systems, vol. 6, no. 4, pp. 253-265, 1987.

[138] M. D. Mesarovié, D. Macko, and Y. Takahara, Theory of Hierarchical, Multilevel, Systems.
New York: Academic Press, 1970.

[139] G. Meyer, “On hybrid problems in flight control,” in Workshop on Hybrid Systems, (Cornell
Univ.), MSI, June 1991.

[140] R. Milner, Communication and Concurrency. New York: Prentice-Hall, 1989.

[141] MoTAVALLI, S., AND BIDANDA, B. A part image reconstruction system for reverse engi-
neering of design modifications. J. Manufacturing Systems 10, 5 (1991), 383-395.

[142] T. Murata, “Petri nets: Properties, analysis, and applications,” Proceedings of the IEEE,
vol. 77, no. 4, pp. 541-580, 19R89.

[143] G. 1. Olsder, “Applications of the theory of discrete event systems to array processors and
scheduling in public transportation,” in Proceedings of 28th IEEE Conference on Decision
and Control, Dec, 1989,

[144] J. S. Ostroff, “Real-time computer control of discrete systems modelled by extended state
machines: A temporal logic approach,” Tech. Rep. # 8618, Systems Control Group, De-
pertment of Electrical Engineering, University of Toronto, Canada, 1986.

107

[145] C. M. Ozveren, Analysis and Control of Discrete Event Dynamic Systems: A State Space
Approach. PhD thesis, LIDS, MIT, Cambridge, MA, 1989.

[146) Ozveren, C. M., WILLSKY, A., AND ANTSAKLIS, P. Stability and stabilizability of
discrete event dynamic systems, Laboratory of Information and Decision Systems LIDS-P-
1853, MIT, Cambridge, MA, 1989.

[147] C. H. Papadimitriou, Elements of the Theory of Computation. Englewood Cliffs, NJ:
Prentice—Hall, 1981.

[148] C. H. Papadimitriou, The Theory of Database Concurrency Control. Rockville, MD: Com-
puter Science Press, 1986.

[149] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-
plezity. Englewood Cliffs, NJ: Prentice-Hall, 1982,

[150] A. Papoulis, Probability, Random Variables and Stochastic Processes. New York: McGraw-
Hill, 3rd ed., 1991.

(151] K. M. Passino and P. J. Antsaklis, “Event rates and aggregation in hierarchical systems,”
Discrete Event Dynamic Systems: Theory and Applications, vol. 1, no. 3, pp. 271-288, 1991.

[152] J. R. Perkins and P. R. Kumar, “Stable, distributed, real-time scheduling of flexible
manufacturing/assembly /disassembly systems,” IEEFE Transactions on Automatic Control,
vol. 34, no. 2, pp. 139-148, 1989,

(153] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ:
Prentice- Hall, 1981,

[154] H. Plinnecke and W. Reisig, “Bibliography of Petri nets 1990,” in Advances in Peiri Nels
1991 (G. Rozenberg, ed.), vol. 524 of Lecture Notes in Computer Science, pp. 317-572,
Berlin: Springer—Verlag, June 1991,

[165] A. Pnueli, “The temporal semantics of concurrent programs,” in Semantics of Concurrent
Computations (G. Kahn, ed.), vol. 70 of Lecture Notes in Computer Science, (Berlin), pp. 1-
20, Springer—Verlag, 1979.

[166] A. Pnueli and E. Harel, *Applications of temporal logic to the specification and verification
of reactive systems: a survey of current trends,” in Current Trends in Concurrencey, vol. 224
of Lecture Notes in Computer Science, (Berlin), pp. 510-584, Springer-Verlag, 1986.

[157] P.J. Ramadge, Clontrol and Supervision of Discrete Event Processes. PhD thesis, University
of Toronto, Canada, 1983,

[158] P. J. Ramadge, “On the periodicity of symbolic observations of piecewise smooth discrete-
time systems,” IEEE Transactions on Automatic Control, vol. 35, no. 7, pp. 807-813, 1990.

108

[159] P.J. Ramadge and W. M. Wonham, “Modular Feedback Logic for Discrete Event Systems”,
SIAM Journal of Control and Optimization, September 1987.

[160] P.J. Ramadge and W. M. Wonham, “Supervision of discrete event processes,” in Proceedings
of 21st IEEE Conference on Decision and Control, (Orlando, FL), pp. 1228-1229, Dec. 1982,

(161] P. J. Ramadge and W. M. Wonham, “Supervisory Control of a Class of Discrete Event
Processes”, SIAM Journal of Control and Optimization, January 1987.

[162] R. Ravichandran and A. K. Chakravarty, “Decision support in flexible manufacturing sys-
tems using timed Petri nets,” Journal of Manufacturing Systems, vol. 5, no. 2, pp. 89-101,

1986.
[163] W. Reisig, A Primer in Pelri Nel Design. Berlin: Springer—Verlag, 1992,
[164] G. E. Révész, Introduction to Formal Languages, McGraw-Hill, 1985.

(165] L. C. G. Rogers and D. Williams, Diffusions, Markev Processes, and Martingales, vol. 2.
New York: Wiley, 1987.

[166] S. M. Ross, Introduction to Stochastic Dynamic Programming. New York: Academic Press,
1983.

[167] R. Rubinstein, Monte Carlo Optimization, Simulation, and Sensitivity Analysis of Queueing
Nelworks. New York: Wiley, 1986.

[168] R. Rubinstein, “The score function approach of sensitivity analysis of computer simulation
models,” Mathematics and Computation in Simulation, vol. 28, pp. 351-379, 1986.

[169] S. Rudneau, Boolean Functions and Equations. North-Holland, 1974.
[170] A. Salomaa, Theory of Automata. Oxford, UK: Pergamon Press, 1969.

[171] B. Sarikaya and G. V. Bochmann, eds., Protocol Specification, Testing, and Verification,
vol. VI. North—Holland, 1987.

[172] SARKAR, B., AND MENQ, C. Smooth-surface approximation and reverse engineering. Com-
puter Atded Design 23, 9 (November 1991), 623-628.

[173] R. J. Schilling, Fundamentals of Robotics: Analysis and Control. Englewood Cliffs, NJ:
Prentice-Hall, 1990.

[174] S. Schneider, Correctness and communication of real-time systems. PhD thesis, Oxford
Univ., Mar. 1990,

(175] J. M. Schumacher, “Discrete events: Perspectives from system theory,” CWI Quarterly,
vol. 2, no. 2, pp. 131-146, 1989.

109

[176) W. K. Shih, J. W. S. Liu, and J. Y. Chung, “Fast algorithms for scheduling tasks with
ready times and deadlines to minimize total error,” in Proceedings of 10th IEEE Real-Time
Systems Symp., Dec, 1989. '

[177] M. Silva and R. Valette, Petri Nets in Flezible Manufacturing, pp. 375-417. Advances in
Petri Nets, Berlin: Springer-Verlag, 1990.

[178] J. L. Snowdon and J. C. Ammons, “A survey of queueing network packages for the analysis
of manufacturing systems,” Manufacturing Review, vol. 1, pp. 14-25, 1988.

[179] SosH, T., JAyNes, C., DEKHIL, M., AND HENDERSON, T. Intelligent Systems: Safety,
Reliability. Springer-Verlag, Berlin, 1993, ch. Automated Inspection and Reverse Engineer-
ing, pp. 95-122,

[180] Sosu, T. M., DEKHIL, M., JAYNES, C., AND HENDERSON, T. A perception framework for
inspection and reverse engineering. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR '93) (June 1993). New York City.

[181] Sosu, T. M., DEkHIL, M., AND OwEgN, J. C. Discrete event control for inspection and
reverse engineering. In IEEE International Conference on Robotics and Automation (May
1994). San Diego.

[182] Sosu, T. M., Owen, J. C., DEkniL, M., JaynEs, C., AND HENDERSON, T. Industrial
inspection and reverse engineering. In IEFE 2nd CAD-Based Vision Workshop (February
1994). Pittsburgh.

[183] SoBH, T. Discrete evenl dynamic systems: An overview. GRASP LAB 264, Dept. of
Computer and Information Science, University of Pennsylvania, Philadelphia, PA, May
1991. Also MS-CIS-91-39,

[184] SomH, T. A framework for visual observation. GRASP Lab 261, University of Pennsylvania,
Philadelphia, PA, May 1991, Also MS-CIS-91-36.

[185] T. Sobh, “Performance evaluation via perturbation analysis,” Tech, Rep. 263, GRASP Lab,
University of Pennsylvania, Philadelphia, PA, May 1991.

[186] T. Sobh, Active Observer: A Discrete Fvent Dynamic Systern Model for Controlling an
Observer Under Uncertainty. PhD thesis, University of Pennsylvania, Philadelphia, PA,
Dec. 1991.

[187] Sosn, T., Balcsy, R., AND JAMES, J. Visual observation for hybrid intelligent control
implementation. In 3Ist IEEE CDC (Tucson, AZ, USA, December 1992), IEEE.

[188] SosH, T., OWEN, J., JAYnNES, C., DEKHIL, M., AND HENDERSON, T. Active inspection
and reverse engineering. C.S. Dept. UUCS-93-007, University of Utah, Salt Lake City, Utah,
UUSA, March 1993.

110

(189] SosH, T., JayNEs, C., AND HENDERSON, T. A discrete event framework for intelligent
inspection. In Proc. 1993 IEEE Int. Conf. Robotics and Automation (May 1993). Atlanta,
GA. '

(190] T. M. Sobh and K. Wohn, “Recovery of 3-D Motion and Structure by Temporal Fusion™.
In Proceedings of the 2" SPIE Conference on Sensor Fusion, November 1989,

[191] X. Song and J. W. S. Liu, “Performance of multiversion concurrency control algorithms in
maintaining temporal consistency,” in Proceedings of IEEE Compsac, (Chicago, IL), Nov.
1990.

[192] J. A. Stankovic and K. Ramamritham, eds., Tutorial: Hard Real-Time Systems. Washing-
ton, D. C.: IEEE Computer Society Press, 1988.

[193] S. G. Strickland and C. G. Cassandras, “An “augmented chain” approach for on-line sensi-
tivity analysis of Markov processes,” in Proceedings of 26th IEEE Conference on Decision
and Control, (Los Angeles, CA), pp. 1873-1878, Dec. 1987.

[194] M. Subbarao and A. M. Waxman, On The Uniqueness of Image Flow Solutions for Planar
Surfaces in Motion, CAR-TR-113, Center for Automation Research, University of Mary-
land, April 1985.

[195] R. Suri, “Perturbation Analysis : The State of the Art and Research Issues Explained via
the GI/G/1 Queue”, Proc. of the IEEE, January 1989.

[196] A. Tomlinson, G. Hoagland, and V. K. Garg, “Distributed resource management using
active supervisory predicate control,” in Proceedings of 1992 American Control Conference,
(Chicago, IL), June 1992.

[197] S. Ullman, “Analysis of Visual Motion by Biological and Computer Systems”, IEEE Com-
puter, August 1981,

[198] S. Ullman, Mazimizing Rigidity: The incremental recovery of 3-D structure from rigid and
rubbery motion, Al Memo 721, MIT Al lab. 1983.

[199] K. P. Valavanis and G. N. Saridis, Intelligent Robotic Systems: Theory, Design and Appli-
cations. Boston: Kluwer Academic Publishers, 1992.

[200] VAN THIEL, M. Feature based automated part inspection. Master’s thesis, University of
Utah, 1993,

[201] A. F. Vaz and W. M. Wonham, “On supervisor reduction in discrete event systems,” Inter-
national Journal of Control, vol. 44, no. 2, pp. 475-491, 1986.

[202] D. Vergamini, “Verification by means of observational equivalence on automata,” Tech. Rep.
501, INRIA, Sophia-Antipolis, France, 1986.

111

[203] J. Walrand, An Introduction to Queueing Networks. Englewood Cliffs, NJ: Prentice-Hall,
1988.

[204] F. Y. Wang, “Supervisory control for concurrent. discrete event dynamic systems based on
petri nets,” in Proceedings of 31st IEEE Conference on Decision and Control, pp. 1196-1197,
Dec. 1992,

[205] Y. Wardi, W. B. Gong, C. G. Cassandras, and M. H. Kallmes, “Smoothed perturbation
analysis for a class of piecewise constant sample performance functions,” Discrete Eveni
Dynamic Systems: Theory and Applications, vol. 1, no. 4, pp. 393-414, 1991.

[206] J. F. Watson and A. A. Desrochers, “Applying generalized stochastic Petri nets to manu-
facturing systems containing non-exponential transition functions,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 21, no. 5, pp. 1008-1017, 1991.

[207] N. Weiderman, “Hartstone: synthetic benchmark requirements for hard real-time applica-
tions,” tech. rep., Software Engineering Institute, Carnegie Mellon Univ., Mar. 1989.

[208] D. S. Weld, Theories of comparative analysis. The MIT Press, 1990.

[209] G. Werling, “Planning of sensing tasks in an assembly environment,” Journal of Intelligent
and Robotic Systems, vol. 4, pp. 221-254, 1991.

[210] D. E. Whitney, “State space models of remote manipulation tasks,” IEEE Transactions on
Automatic Control, vol. 14, no. 6, pp. 617-623, 1969.

[211] W. Whitt, “Continuity of generalized semi-Markov processes,” Mathematics of Operations
Research, vol. 5, pp. 494-501, 1980.

[212] H. Wong-Toi and D. L. Dill, “Synthesizing processes and schedulers from temporal spec-
ifications,” in Computer-Aided Verification '90, DIMACS Series in Discrele Mathematics
and Theoretical Compuler Science, Volume 3, pp. 177-186, American Mathematical Society,
1991.

(213] W. M. Wonham, Computational and Combinatorial Methods in System Theory, ch. On
Control of Discrete Event Systems, pp. 159-174. North-Holland: Elsevier Science Publisher
B.V., 1986.

[214] C. M. Woadside, “Response time sensitivity measurement for computer systems and general
closed queueing networks,” J. Performance Evaluation, vol. 4, pp. 199-210, 1984,

[215] Y. T. Yu and M. G. Gouda, “Deadlock detection for a class of communicating finite state
machines,” IEEE Transactions on Communications, vol. 30, no. 12, pp. 2512-2516, 1982.

[216] B. P. Zeigler, Multifacetted modelling and discrete event simulation. New York: Academic
Press, 1984.

112

[217] B. P. Zeigler, “Hierarchical, modular discrete event modelling in an object oriented envi-
ronment,” Simulation J., vol. 49, no. 5, pp. 219-230, 1987.

[218] B. Zhang, Performance gradient estimation for very large Markov chains. PhD thesis,
Harvard Univ., 1990.

[219] W. Zhang, “Representation of assembly and automatic robot planning by Petri net,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 19, no. 2, pp. 418-422, 1989.

[220] H. Zhong and W. M. Wonham, “On the consistency of hierarchical supervision in discrete-
event systems,” JEEE Transactions on Automatic Control, vol. 35, no. 10, pp. 1125-1134,
1990.

[221] M. C. Zhou, A Theory for the Synthesis and Augmentation of Petri Nets in Automation.
PhD thesis, ECSE, Rensselear Polytechnic Institute, Troy, NY, 1090,

[222] M. C. Zhou and F. DiCesare, Peiri Net Synthesis for Discrete Fvent Control of Manufac-
turing Systems. Boston: Kluwer Academic Publishers, 1993.

113

