A Tool for Data Structure Visualization and User-defined Algorithm
Animation

TAO CHEN AND TAREK SOBH

Department of Computer Science and engineering
University of Bridgeport
Bridgeport, CT 06601, USA

Abstract

In this paper, a software application that features the
visualization of commonly used data structures and
their associated insertion and deletion operations is
introduced. In addition, this software can be used to
animate user-defined algorithms.

1. Introduction

Data Structures and Algorithms is a fundamental
course in Computer Science. However, many
students find it difficult because it requires abstract
thinking. It would be very helpful if there was a
visualization tool of data structures such as arrays,
queues, stacks, trees and graphs for students to
experiment with. The tool would allow students to
see how an element is inserted into or deleted from
different data structures, how a tree is traversed in
different order (pre-order, in-order, post-order,
level-order), etc. Moreover, this tool would provide
a simple language, by which students can write their
own algorithms so that the execution of the
algorithm is animated. This project is intended to
create such an exploration environment, in which
students can learn through experimentation. This
tool can be used as an effective supplement to the
traditional classroom education and textbooks for
Data Structures and Algorithms courses. The
software package presented in this paper has the
following functionality.

a. Provides complete visualization for the
widely used data structures such as array,
stack, queue, tree, heap, graph, etc.

b. Provides the animation of common
operations associated with the data
structures, such as inserting an element into

and deleting an element from array, stack,
and queue.

c. Provides animation of simple user-defined
algorithms.

2. Background

The development of technologies and the
evolvement of the World Wide Web have
influenced education. Instructional Web sites and
courses on the Web have grown dramatically. Web-
based courses that consist of the syllabus,
assignments and lecture notes are now widely used.
Instructional Web sites that are dedicated to Data
Structures and algorithms can be easily found by
using Search Engines. To name a few:

http://swww.ee.uwa.edu.au/~plsd210/ds/ds_ToC.ht
ml 1]
http://www.cee.hw.ac.uk/~alison/ds98/ds98.html
[2]

http://www.cs.twsu.edu/~bjowens/cs300/ [3]
http://www.cs.berkeley.edu/~edith/cs270/ [4]

However, The majority of the instructional web
sites explored during this project lack interactive
multimedia.

One of the best sites found that does contain
interactivity is a course site developed for teaching
Data Structures and Algorithms in Java by the
Computer Science Department of Brown University
[5]. This site has a collection of applets that
demonstrate some commonly used data structures
such as queues, stacks, and some famous algorithms
such as merge sort, quick sort, etc. However, these
applets are not complete and lack a common
Graphical User Interface. Another good site in
interactive Data Structure visualizations is

developed by Duane J. Jarc in George Washington
University [6]. This site provides animations in
binary Trees, graphs, and sorting algorithms. But
there is no animation available for algorithms that
are defined by users.

Algorithm animation is a type of program
visualization that is mainly concerned with
displaying the executions of computer algorithms.
Lots of work has already been done in this field. For
example, the XTANGO [7] and POLKA [8]
systems developed by the Graphic, Visualization
and Usability Center (GUV) at Georgia Tech are
general-purpose animation systems, which require
the user to write an algorithm in the C language and
register the events that the user wants to observe
during the execution of the algorithm. However,
these systems are implemented on top of Unix and
X11 Window system, and are not portable to other
platforms. In addition, we feel they are overkill for
a basic Data structures and Algorithms course.

Another algorithm animation system found is
Zeus[9], which is developed by Digital Equipment
Corporation's Systems Research Center. This
system is a little complicated, require from the user
lots of effort to prepare animations. It is targeted at
more advanced application programmers.

Since our software is intended to the aid first year
Computer Science students learning Data Structures
and Algorithms, ease of use becomes our main
consideration. Our approach for the user-defined
algorithm animation is that the user codes the
algorithm in a simple language called JavaMy,
which is very similar to Java. The only effort the
user needs to make is to instantiate the data
structures he/she wants to observe using the
observable data types provided by the software.
After parsing the JavaMy algorithm file, an
animation frame is created and the observable data
structures are added to the frame so that the user can
watch the changes made to the data structures when
the algorithm is executing.

3. Software Package
Before discussing the design of the software

package, an overview of the functionality of the
package is given here. The screenshots on the

following pages should give an idea of how the
software runs.

3.1 Data Structure Visualization

The observable data structures currently available in
this software packages include: array, stack, queue,
binary search tree, heap and graph. They will be
introduced in subsections 3.1.1-3.1.6.

3.1.1 Array

An Array stores a collection of identically typed
objects, which are randomly accessible by a
numeric index. The structure and insert, delete
operations are shown in Figures1-5.

[I =]

File DataStructures Build About

= |
= 58 [=] S

Make Array

0000000000
Step @ Single Step Continuous Pause Resume ‘ 3 Ahaort

Figure 1: Array

8 =1 £

Hle DataStructures Build About

=i Array (O]]

Iake Array

__| 000000000 ©

Inger Node

Step (® Single Step C Continuous ause | | Resume

Figure 2: Insert a node into array

3.1.2 Stack

& 9 [=
File DataStructures Build Ahout
Ay Be A stack is a data structure in which all access is

restricted to the most recently inserted element. The
basic operations of a stack are push, pop and top.
The structure and the push, pop operations are
shown in Figures 6-8.

Make Array

-l PQOOOOOO0000

& IS [=]
File DataStructures Build Ahout
[Stack N i S

Ingert Node

Pause Resume ‘ 2 Ahort | |

Step | @ Single Step Continuous

ifhake Slack:

Fush a Node

Figure 3: Insertion done

00000

Pause Resurme. 4 3 Abort

& I8 [=1 B
File DataStructures Build Ahout =

Step (" Single Step @ Continuous

[Armray

Deleted Nodes: e

ake Array

Figure 6: Stack
] o000 00000 8

[=]
Insert Node | Fle DataStructures Build About
24 Stack [_[Ofx]

Pause Resurme. 4 3 Ahort [

Step @ Single Step C) Continuous

Make Stack

Figure 4: Delete a node from array

06080000

Pop a Mode

- . _) .
= _[o]x]

File Data Structures Build About

Siep | € Single Sten (8 Continuous

Pause Resurme) » Ahort

EAray [_[O]x]

Deleted Nodes: e

e Array

Figure 7: Push a node into the stack

| 000000000

3.1.3 Queue

Pause Resure ‘ v Aaort| il

[385] @ sriesen C cortnuose A queue is a data structure that restricts the access
to the least recently inserted item. The basic
operations supported by queues are enqueue and
dequeue, representing insertion to the rear (back)

and removal of the item at the front. Figures 9-11

Figure 5: Deletion done

demonstrate the array-based queue structure and
associated operations.

& (=15
File DataStructures Build Ahout

=2 Stack

Poped Nodes: Q

Make Stack

Fush a Mode|

06090

Pausze Resurme 1 3 Ahort

Sien | € Single Step @ Continuous

Figure 8: Pop a node from the stack

@ =5
File DataStructures Build Ahout
5 Queue 1 [=] B

Front Rear

] 0000000000

Step " Single Step @ Continuous

Figure 9: Array-based Queue

=3 =[Ol
Fle DataStructures Build Ahout

[Queue

Front

Step " Single Step (8 Continuaus

Fause REsUmEe ‘ v Abort

Figure 10: Enqueue an element to the queue

=] (O[]
File DataStructures Build About

2l Queue (=

Dequeued Nodes: @

Front Rear

0000000000

Palse Resume ‘ > Abort

Step " Single Step @ Gontinuous

Figure 11: Dequeue an element from the queue

3.1.4 Binary Search Tree

A binary search tree is a kind of binary tree where
every node’s left subtree has values less than the
node's value, and every right subtree has greater
values. The basic operations are delete, insert and
find as shown in Figures 12-16.

=] (O[]
File DataStructures Build About

i Binary Search Tree 1 [=] B

Find a Node

@ Random
1l Pick

Pause. Resume Ll] Abort

Step " Single Step @ Continuous

Figure 12: Binary Search Tree
3.1.5 Binary Heap

A Binary heap is a complete tree where every node
has a key more extreme (greater or less) than or
equal to the key of its parent. In this paper, a Max
Heap is implemented. The allowed operations are
deleteMax and insert as shown in Figures 17-19.

& I8 [=1 B

& 8 [=] 3 File DataStructures Build Ahout
File Data Structures Build About i Binary Search Tree oI

]

Insent

Inzert

Find a Mode
Find & Hode

Enter Value To Insert:

e

@ Il Pick

Pause Resurme < 3 Abart

Step " Single Step @ Continuous

Figure 16: Deletion Done

e . [Y 1 H[=] E3
File DataStructures Build About File Data Structures Build About

i

B Binary Search Tree 1 [=1 3 [Heap M=

Ingert

Find a Mode

DeleteMax

" Randam
1l Pick

Stap (" gingle Step @ Continuous _ Step | € Single Step 8 Corfinuous Fause Resurme 4 3 Aot

Pause Resurme 4 3 Ahort

[-Io[x] &) = ||

Ingert

Enter Value To Delete:

Cancel ‘

| -
Pause Resurme ‘ v Abort (% Single Step) Continunts Pause Resurme ‘ v Abort

Il Fick:

step| € Single Step (8 Confinuous

Figure 15: Delete an element from the tree
Figure 18: Delete the Maximum node

&

File Data Structures

Build About

[EiHeap

e |

Siep | @ sSingleStep Conlinuous Pause Resurme . v Aport | B

Figure19: Deletion done

3.1.6 Graph

A graph consists of a set of vertices and a set of
edges that connect the vertices as shown in Figure

20.

|4

18 [=1 B3

File DataStructures Build About

Make Graph

Figure 20: Undirected Graph

3.2 User-defined Algorithm Animation

In this section we describe the steps of animating an
algorithm and the details of the JavaMy language
which is provided by the software and is used for
visualizing the execution of the algorithm.

3.2.1 Steps

To illustrate how the animation of a user-defined
algorithm is done we will use a simple sorting
algorithm -- bubble sort -- as an example to walk
through the steps.

Bubble sort works by repeatedly moving the largest
element to the highest index position of the array. It
focuses on successive adjacent pairs of elements in
the array, either swapping them if they are out of
order or leaving them alone. The algorithm can be
summarized as following.

1. Step through the array of data.

2. While stepping through, if two adjacent values
are not in sorted order, then swap them.

3. When a complete pass of the data has been
conducted, if any swaps have been made, then the
data may still not be sorted. Goto 1.

4. Otherwise, if no swaps were made on the last
pass, then the data is sorted, and the algorithm is
finished.

Before we wuse the software to visualize the
execution of bubble sort, we need to translate the
above algorithm into JavaMy code. The details of
the JavaMy language can be found in next sub-
section. The bubble sort algorithm translated into
JavaMy reads:

/* Bubble Sort Algorithm*/
public static void main(String args[])

{
final int SIZE = 8;

M/Array intArray = new M/Array(
Ani mat or Fr ane. ARRAY_PCSI TI ON, Sl ZE) ;

for (int i=0;
{

i <SI ZE; i ++)
i nt Array. set Val ug(

Scr eenPanel . get Randon(10, 100), i);
}

for (int i=SIZE, i>1; i--)

for (int j=0; j<i-1; j++)

if (intArray.getint(j) >
intArray.getint(j+1)) {
intArray.swap(j, j+1);

The first step is to write the algorithm. The user can
use any text editor to enter and edit the algorithm.
To make it easy to use, the software provides a
simple built-in code editor. By clicking File->New
menu item, the user can enter the code into the text
field as shown in Figure 21.

2% Simple Algorithm Animator

File DataStructures Build Ahout

Figure 21: Algorithm Animator

The second step is to save the entered algorithm
into a file by clicking File->Save as menu item as
shown in Figure 22.

[Simple Algorithm Animator (- [Ofx]
File | Data Structures Build About

New CHkN
Open cila M7

Save EUS Loying argpy

Save As

Exit

MyArray intAray = new MyArray(animatorFrame ARRAY_POSITION,SIZE),

for (int 1=0; [<BIZE; i++)
{

intarray.setvalue(ScreenPanel getRandomd10, 100, if;
i

for (int i=8IZE; i=1; i)
¢
for (intj=0; j=i-1, j++)
{

if tintArray.getint() = intArray.getint+11) {
intArray. swapd, j+13;
+

Figure 22: Save Algorithm File

After saving the file, the user can parse it by
clicking the Build->Compile menu item as in
Figure 23.

EEiSimple Algorithm Animator 9 =1 B3
File Data Structures | Build | about

Compile F5
final int SIZE = 8; Run F8

[Tr

hyArray intArray = new MyArray(AnimatarFrame ARRAY_POSITION SIZE),
for {inti=0; i=5IZE; i++)

intArray. setvalue(ScreenPanel.getRandom(10, 100}, i,
}

for (int i=SI1ZE; i=1, i)
{
for {intj=0; j=i-1; j++)

if (intArray.getintj) = intArray.getint+13) {
intArray.swap(, j+1);
+

Figure 23: Parse and Compile Algorithm File

If the file is edited using another editor, the user
can load the algorithm file by first clicking the File -
> Open menu item, then finding the file name in the
File Open dialogue as shown in Figure 24.

i

[I j=] B3

File Data Structures Build About

ML IREIRE] o)

Look in: |] myAlgarithms:

[InToPost javamy

D balanceChecker javarmy
[breadthFirstSearch javamy
[y bubblaSon javany

[depthFirstsearch.javamy
[y heapsort javamy

[y inOrder. javamy

=

File name: |buhmaann|avamy

Files of type: ‘ Java Files("javarmy)

Figure 24: Open an Algorithm File

If no error occurs during the parsing process, the
resulting Java file will be compiled. If errors occur
during the parsing or compilation process, the errors
will be displayed on the text area on the bottom of
the window. The user can then go back to the
algorithm file and make necessary corrections. If
the file is parsed and compiled successfully, a
corresponding message will be displayed as shown
in Figure 25.

E24 Simple Algorithm Animator

File Data Structures Build About

final int SIZE= 8,
MyArray intrray = nes MyArray(AnimatarFrame ARRAY_POSITION, SIZE) L

for (inti=0, i=5IZE; i++)
i

intArray. setvalue(ScreenPanel getRandom(10, 100), i},
}

for (int i=SIZE; i=1; i)
¢
for (int j=0; j<i-1; j++)
¢
if (intArray. oetint(y = intArray. getint|+1) {
intArray. swap(, i+13;
+

=emmmmeee-- Algorithm Paree and Java Compiler --—-----—--
Parse completed Successfully.
Compilation completed Successfully.

Figure 25: Parsed and Compiled Successfully

The user can then click Build->Run menu item to
watch the animation. The animation frame is shown
in Figure 26.

™ Bubkin Sort Algarihen %
public slalic void main(Sring scol
fnal it 175 = :

MiAITaY INLAITSY = naw MyATaylAnIenE1D
B (=0, ISLZE, foe)

Interay SRNAIUR(SErRRNPANE] GRS

00000000

¥ iintamay pedni() insteray. g
ntaray swap, (+1)

| e | Singie Step] ¢ Contoous s I

Figure 26: Animation Frame of Bubble Sort

ol 0 s Vour Aiguitn

The animation frame consists of the animation
canvas, the user algorithm text field, and the
animation control panel. The animation canvas is
where the data structures used in the algorithm are
displayed. The user-defined algorithm coded in
JavaMy language is displayed in the right hand text
field. The control panel can be used to control the
animation. Users can choose to run the algorithm
animation either continuously or step by step by
clicking the radio button labeled “Continuous” or
“Single Step”. The animation speed can be changed
by clicking the slider bar.

3.2.2 JavaMy and Algorithm Coding

As mentioned earlier, JavaMy is the language used
to code the user-defined algorithm. The syntax of
JavaMy is similar to Java. The difference is in the
program constructs. Every program in Java consists
of at least one class definition. When the class
definition is saved in a file, the file name must be
the class name followed by the “java” file name
extension. However, in JavaMy the user does not
need to define a class, the coded algorithm is put
into the main() method. That is, the user algorithm

file always starts with
public static void main(String args[])

Moreover, the algorithm file can be named in
anyway the user wants. However, the file name
extension “javamy” is recommended to separate
the algorithm file coded in JavaMy from other files.

When coding the algorithm, the user is allowed to
make a decision regarding which of the data
structures used in the algorithm he/she wants to
observe, and use the set of the observable data types
provided by the software to define these data
structures. All the observable data types are named
by adding the prefix “My” to the corresponding
normal data types. For instance, the observable
array is named MyArray, and the queue is named
MyQueue, etc. The data structure objects that do
not interest the user can be instantiated by the data
types provided by Java API. The software also
provides some helper Java classes such as
DrawableString, which can be used to add labels,
explanations and other useful information to the
Animation Frame. All the available observable data
type classes, helper classes and their usage can be
found in the Javadoc documentation that comes
with the software.

3.2.3 Examples

In this subsection a few more examples will be
presented on how the algorithm is coded in JavaMy
language and what the final animation looks like.
This will help the user to have a good understanding
of algorithm coding.

3.2.3.1 Balanced Symbol Checking

A balanced symbol checker is a tool to help debug
compiler errors, which checks whether symbols are
balanced. In other words, whether every “{*
corresponds to a “}”, every “[* to a “]”, every “(““ to

[2%24

a “)”, and so on. The basic algorithm is stated as
follows:

Make an empty stack. Read tokens until the end
of the input file. If the token is an opening symbol,
push it onto the stack. If it is a closing symbol and if
the stack is empty, report an error. Otherwise, pop
the stack. If the symbol popped is not the
corresponding opening symbol, then report an error.
At the end of the file, if the stack is not empty, then
report an error.

The above algorithm coded in JavaMy is shown in
the following program:.

/* Balanced Synbol checker is used to check
whet her every { corresponds to a }, every [to
a], every (to a). And the squence [()] is
legal, but [(]) is wong.

*/

public static void main(String arg[])

{
String input ="{[([([O]}";
char ¢, match;

String errnsg;

MArray in = new
My Ar r ay(Ani mat or Fr ame. ARRAY_PGCSI Tl ON,
input.length());
My St ack pendi ngTokens = new
My St ack(Ani mat or Fr ame. STACK_PGCSI Tl ON,
0);

for (int i=0; i<input.length(); i++)
{

}

for (int i=0; i<input.length(); i++)
{

i n.setValue(input.charAt(i),i);

c =in.getChar(i);
swi tch(c)
{
case '(':
case '{':
case '[':
pendi ngTokens. push(c);
br eak;

case ')':

case '}':

case ']':

if (pendingTokens.isEnpty())
{

System out. printl n("Extraneous "
+ c +" found");

}

el se

mat ch = pendi ngTokens. t opChar () ;
pendi ngTokens. pop();

if (match =="'(" & c !=")" ||
match == '{" & c !="}" ||
match == '[' & c !="']")

errmeg = "Found \"" + c + "\"
does not match \""+match+"\"";

JOpt i onPane. showiessageDi al og(

new JPanel () , errnsg, "Error",
JOpt i onPane. ERROR_MESSAGE) ;

}

}

br eak;

def aul t:

br eak;
}

}
whil e (!pendi ngTokens. i sEnpty())
{

mat ch = pendi ngTokens. t opChar () ;
pendi ngTokens. pop();
errmeg = "Unmatched \"" +
match +"\"";
JOpt i onPane. showMessageDi al og(new
JPanel (), errnsg, "Error",
JOpt i onPane. ERROR_MESSAGE) ;

}

The program starts with multiple-line comments,
which document programs and improve program
readability. The comment notation in JavaMy is the
same as Java. Multiple-line comments are delimited
with /* and */, and single-line comments are
delimited with //. Following comments is simply a
blank line. Blank lines, space characters and tab
characters are known as white-space. Such
characters are used to make the program easier to
read. They are ignored by the parser. The bold line
indicates the beginning of the real code of the
algorithm. The three lines following the opening
parentheses declare normal variables as in Java,
using the data type provided by the Java
programming language. The next six bold lines
instantiated two observable data structures that will
show on the animation frame. The first one is an
array, which is used to hold the input string, that is,
the string to be checked. The second one is a stack,
which is used to hold the opening symbols. Here,
MyArray and MyStack are used. Both of the
constructors of MyArray and MyStack take two
parameters. One is the Position parameter, which is
used to decide the location of the data structure on
the animation frame. Another parameter is the size
of the array or stack. The rest of the code is the
same as Java. Class MyArray and MyStack
provides most of the commonly used methods, for
example, setters and getters for setting and getting
the values of the elements in the array, respectively,
push(), pop() and methods for peeking the top

element on the stack, etc. Details of those methods
are described in the documentation generated by
Javadoc.

After parsing and compiling the algorithm
successfully, we can run the animation as described

in subsection 3.2.1. The resulting animation frame
is shown in Figure 27.

0 Found “}* does not mastch =

| 10 % singie swp © Gontinuous

Figure 27: Animation Frame of Balanced
Symbol Checking

3.2.3.2 Operator Precedence Parsing algorithm

The operator precedence parsing algorithm converts
an infix expression to a postfix expression. It works
as follows:

Make an empty stack. Go through the infix
expression. If the token read is an operand, we
immediately output it. If it is a close parenthesis, we
pop the stack until an open parenthesis is seen. If it
is an operator, pop all stack symbols until we see a
symbol of lower precedence or a right associative
symbol of equal precedence, then push the operator.
When we reach the end of infix expression, pop all
remaining stack symbols. Everything that is output
and popped from the stack is the converted postfix
expression.

/1 Filenanme: |nToPost.javany
/1 Convert an infix expression into postfix
/'l expression

public static void main (String args[])
{
String infix = "1+2*7-9*5";
Drawabl eString | abel 1 = new
Dr awabl eSt ri ng(new Position(200, 380),
"The infix expression:");
Drawabl eString in = new Drawabl eString(new

10

Posi ti on(200, 400),
Drawabl eString | abel 2 = new
Dr awabl eStri ng(new Posi tion(200
"The out put postfix express
MyQueue out Que = new My Queue(
Ani mat or Fr ane. ARRAY_POSI TI ON, 0) ;
MySt ack opStack = new MySt ack(
Ani mat or Fr ane. STACK_POSI TI ON, 0);

int topOp;

int token;

int i=0;

String operand = new String();

i nfix);

, 180),
ion:");

StringBuffer value = new StringBuffer();

Precedence. i nit PrecTabl e();

while (i< infix.length())

{
switch(infix.charAt(i))

{
case "N
token = Precedence. EXP;
i ++;
br eak;
case '/’
token = Precedence. DV,
i ++;
br eak;
case '*':
token = Precedence. MILT;
i ++;
br eak;
case ' ('
t oken = Precedence. OPAREN;
i ++;
br eak;
case ')’
t oken = Precedence. CPAREN;
i ++;
br eak;
case '+':
token = Precedence. PLUS;
i ++;
br eak;
case '-'
t oken = Precedence. M NUS;
| ++;
br eak;
default: //operand
val ue. del ete(0, value.length());
char ¢ = infix.charAt(i);
while (c!="" && c!="/" && cl="*'
& c!="(' && c!=")" && c!="+
& cl="-'" && c!=" ")
{
val ue. append(c);
if (++i>=infix.length())
br eak;
c = infix.charAt(i);
}
t oken = Precedence. VALUE;
operand = new String(val ue);
}
switch(token)
{

case Precedence. VALUE:

out Que. enqueue(oper and) ;
br eak;
case Precedence. CPAREN:
while((topOp = opStack.toplnt())
1= Precedence. OPAREN && topQOp ! =
Precedence. ECL)
{ //pop and out put operators on the
//stack until meet the open parenthesis
out Que. enqueue(Precedence. t oken2char (

top));
opSt ack. pop();

}
if(topOp == Precedence. OPAREN)
{//CGet rid of opening parentheseis

opSt ack. pop() ; }
el se
{ Systemout. println(

"M ssing open parenthesis");
t oken = Precedence. ERR;

}

br eak;

defaul t: /1 Ceneral operator case
if (!'opStack.isEnpty())
{

topOp = Precedence. char 2t oken(
opSt ack. topChar());
whi | e(((Precedence) Precedence.
precTabl e. el enent At (t oken)).
i nput Synbol <=((Precedence)
Precedence. precTabl e. el enent At (
topQp)).topOF Stack)

if (topOp==Precedence. OPAREN)
{

Systemout. println(
“Unbal anced parent heses");
token = Precedence. ERR;
br eak;
}

out Que. enqueue(

Precedence. t oken2char (topQ));
opSt ack. pop();
if (opStack.isEnpty())

br eak;
topOp = Precedence. char 2t oken(
opSt ack. topChar());
}

}
if (token != Precedence. EQL)

opSt ack. push(
Pr ecedence. t oken2char (t oken));
}
el se
br eak;
}//end switch

if (token == Precedence. ERR)
br eak;
} // end for

while (!opStack.isEnpty())

{// pop up all renmining stack synbols
out Que. enqueue(opSt ack. t opChar ());
opSt ack. pop();

}

11

In this example, two observable data structures and
a helper class are used, namely, MyQueue, MyStack
and DrawableString. The queue is used to store the
resulting postfix expression, and the stack is used to
hold the operators. The DrawableStrings add some
nice labels in the animation frame as shown in
Figure 28 and 29, which make the animation
clearer. The constructor of the MyQueue class also
takes position and size as the parameters. The
DrawableString takes two parameters of type
Position and String, respectively. The String
parameter passed is the string that will show on the
animation frame.

The output porsdie ssganssion:

The output porsste

000000000

Single Sep (F Continuous Feose | Becone |

Figure 29: Infix to Postfix animation done
3.2.3.3 Heap Sort Algorithm

Heap sort is an algorithm to sort by building a heap,
then repeatedly extracting the minimum item. An
example heap sort written in JavaMy is shown as
follows:

public static void main(String args[])

{

final int M N_NODES = 10;
final int MAX NODES = 32;
final Position ROOT_POSI TION = new
Position(273, 80);
int nunber O Nodes;
Random random = new Random();
MyHeap nyheap = new MyHeap(ROOT_POSI TI ON); Q’ \Q
Drawabl eStri ng nodeLabel 1 = new qu ORO ‘ g sheiorie e
Dr awabl eSt r i ng(ROOT_POSI TI ON) ; o et
Dr awabl eStri ng nodelLabel 2 = new sinatano'
Dr awabl eSt ri ng(ROOT_PGCSI TI ON) ; P r Ay —
Drawabl eString | abel 1 = new L.Ibm
Dr awabl eStri ng(new Posi tion(20, 370), PRI E AR e | e
"Before Sort:"); o S
Drawabl eStri ng b4Sort = new Pr—
Dr awabl eStri ng(new Posi tion(20, 390)); B
Drawabl eString | abel 2 = new Drawabl eString I “Step | [ingie Sag) (~ Gontimous 1 = z

(new Position(20, 440), "After Sort:");
Drawabl eString afterSort = new
Dr awabl eStri ng(new Position(20, 460));

int values[] = new int[MAX_NODES] ;
nunber O Nodes = Mat h. abs(random next | nt ()

i $talit void main(Sking sys(D

% (MAX_NODES / 2)) + M N_NCDES; i piosae
H nn - - I al I WA _| NLL E5= X
String tenmp =) - fesl Pusior ROST_Pog smo
/1 get the node val ues SN ~ ‘ s b
for (int i = 1; i <= nunber O Nodes; i ++) & ’\° o DrmablefrnabiSort= new
val ues[i] = Math. abs(o o O/ \. S
invaluea] = new ini
random next I nt () %400) ; et -
.uqamnm-‘nv i
for (int i=1; i<=nunber O Nodes; i++) P = wam
tenp = tenp + values[i]+" "; G 0B 4000 DG '-,Lm:'l”;;:."ttT:
BAZOR EetTringRarnp);
b4Sort.setString(tenp); e il

nmyheap. makeHeap(val ues, nunber O Nodes, [,
nodelLabel 1, nodelLabel 2);

/1 Performng Sort
int i = nunber O Nodes;
while (i > 1)

myheap. r oot . swapNodes(nmyheap. heap[i],

nodelLabel 1, nodelabel 2); gt s g (s <320
nmyheap. heap[i]. changeCol or () ; : _ Epl:;ﬁ'.%[;ir:m
myheap. r oot . reheapbDown(--i, nodelLabel 1,

nodelLabel 2);

~ \\\ /,/ \\‘\ L £ 25

} o o v
nmyheap. r oot . changeCol or () ; @ " °/ \. ﬂ::i:l:iliz'f..";;m“;
l int valu?:ﬂ- r?f-nﬂﬂrﬁ

//output the sort result e,
t errp = "") ':‘vﬁ::n‘l“"“pvnlll;r-l:ﬁnan
. . . . | sl = MaTh abe
for (int j=1; j<=nunmber O Nodes; | ++) P fo gt ; Jsnumbacomioge

7503 60 71 99 6 27 47 40 91 48 66 BN = Bannp = valy

tenmp = tenp+rryheap heap[j].getString()

baSor etSingdamp);
T":’:n:r 40 47 &0 &0 B8 T1 TS5 03 89 T TAHD IS, N
afterSort. set St r| ng(tenmp); —

} It = fumbrOmodns;

oI Gingln S%p (= Continuous Fause | Resume |

This example demonstrates the usage of the
observable data type MyHeap. The resulting Figure 32: Heap Sort Done
animation frames are shown in Figures 30-32.

12

3.2.3.4 Breadth-first Search Algorithm

The breadth-first search algorithm takes a graph and
a vertex in the graph known as the source, and visits
(performs functions on) each node that can be
reached from the source by traversing the edges. In
doing so, it is easy to determine which vertices can
be reached from the source. The algorithm for
breadth-first search from a source vertex s in a
graph g is as follows:

enqueue the source vertex;

r epeat
dequeue u;
perform any rel evant operations on u;
enqueue all the neighbors of u;

until the queue is enpty

The algorithm coded in JavaMy is:
/'l Breadth First Search
public static void main(String args[])

{
final Position GRAPH PCSI TI ON = new
Posi ti on(80, 80);
MG aph myG aph = new MyG aph(
GRAPH_PCSI TION, 4, 8, true);
Drawabl eString | abel = new Drawabl eStri ng(
new Position(20, 390),
"Visited Nodes(Breadth First):");
Drawabl eString traversal Li st = new
Dr awabl eStri ng(new Position(20, 420));
| abel . set Col or (Col or. bl ue);
traversal Li st. set Col or (Col or.red);
myG aph. makeG aph(2, 2);
myG aph.init();
/'l search the graph

int depth = 0;
int current = myG aph.initSearch(false);
Vect or next Queues[] = new

Vect or [nyGr aph. get NumOf Nodes()];
next Queues[depth] = new Vector();
Position positions[] = new Position[1];
positions[0] =

my G aph. nodePosi ti on(current);

myGraph. circl e. roveTo(positions);
my G aph. t raceAndMar k(current,

traversal List);
myGr aph. set Next s(current,

next Queues[dept h]) ;
next Queues[++dept h] = new Vector();
while (! nyG aph. enpty(

next Queues[depth - 1]))
{
current = nmyG aph. get Next (
next Queues[depth - 1]);

positions[0] =
myG aph. nodePosi ti on(current);

myG aph. circl e. roveTo(positions);
myG aph. t raceAndMar k(current,

traversal List);
myG aph. set Next s(current,

next Queues[depth]);
if (nextQueues[depth - 1].size() ==

next Queues|[++dept h] = new Vector();

13

myG aph. circl e. hide();

This example demonstrates usage of the observable
data structure MyGraph. Some snapshots of the
animation are shown in Figures 33-35.

et First Search

public £talic voud main{Sing &
i

mytirsgh makedeay
myGirseh int;

1 5RarEn tha ganh
0,

Wigited NodesDreadth First.

et First Search |
public £talic voud main{Sing &
i

Tl Pugibun GRAP

MyGiraph mytiaph =
DrawableString labe

v

[als
traversallist ol

mytirsgh makedeay
myGirseh int;

U 3RAIh the gragh
it duptn= 0,

i cuemant

P
A0S EONERY = A
Tireph.cirke may
mytiragh traceAndl
Wigited NodesDreadth First.

IEFACMBJC

0 RRE First Gaaren

pubks stae v makrdString ;.
{

mAGiagh maknGag
raRh R,
saarch the gragh

il dept = 0,
I comra= iy
var

Fos
posmonE| = myor

yGraph.circle oy

isBad Nodesd@radin Firsl

while (myGiraph en
{

EFAGMBICKNLOKD cument=

1=l Bingla Siep (% Contiegous Fauss | Resume f4

Figure 35: Breadth-first Search done

3.2.3.5 Depth-first Search Algorithm This example uses the observable data structure
MyGraph and the helper class DrawableString. The

Depth first search is another way of traversing resulting animation is shown in Figures 36-38.

graphs, which is closely related to a preorder
traversal of a tree.

The algorithm coded in JavaMy:

/1 Depth First Search
public static void main(String args[])
{
final Position GRAPH PCSI TI ON = new
Posi ti on(80, 80);
MG aph myG aph = new MyG aph(
GRAPH _PCSITION, 4, 8, true);
Drawabl eString | abel = new
Drawabl eStri ng(new Posi tion(20, 390),
"Visited Nodes(Depth First):");
Drawabl eString traversal Li st = new
Dr awabl eStri ng(new Position(20, 420));
| abel . set Col or (Col or. bl ue);
traversal Li st. set Col or (Col or.red);
myG aph. makeG aph(2, 2);
myGraph.init();
int current = nyGaph.initSearch(true);
/| search the graph
dept hFi r st Sear ch(myGr aph,
current,traversal List);
my G aph. arrow. hi de();

}

private static void depthFirstSearch(MG aph
myG aph, int current, Drawabl eString
traversal Li st)

if (!'nmyGaph.marked[current])
{

myG aph. arrow. set Di recti on(

myG aph. nodePosi tion(current), true);
Position positions[] = new Position[1];
posi tions[0] =

my G aph. nodePosi ti on(current);
myG aph. arr ow. nroveTo(positions);
my G aph. t raceAndMar k(current,
traversal List);

Vect or next Queue = new Vector();
myGraph. set Next s(current, next Queue);
whi l e (! nyG aph. enpt y(next Queue))
{

int next = nyG aph. get Next (next Queue);
dept hFi r st Sear ch(myG-aph, next,
traversal List);

myGraph. arrow. setDi recti on(
myG aph. nodePosi tion(current), false);
positions[0] =
myG aph. nodePosi ti on(current);

myG aph. arr ow. nroveTo(positions);
myG aph. traceAndMar k(current,
traversal List);

}
}/lend if
}

14

Visiied Nodss (D0 Firsty

U Dwgth First Search

publi: static void marngString angs(D
1

finsd Postion GRAFH_POSIT
MAGrEh AiGraph = Fw My
Driwith cabel = rew [
Drawabledting ravsralist
labul SeColonCeke B
travarsalList satColonCease e

maytieaph rakeeaphl,),

rent = AryBraph.intEes
dRpINFirstSaareh (rOeaph, ¢
G AW hidel;

rivilie SEatis wood dupinF sIS e NN
M rvGraph markedjumesd)
{

CRAph Amw 58
Posaon postions|

rryCeaph raceAnd
Vactor pestuAye
yGraph semets
whilB (iyaph 8t
[
intrat=
dapihFir

mipGraph inad;
inleurrent = MyGraphinitSes
depthFirstearchirmOraph, «
mipGraph A hide i

I

pitvate stalic vold degmF RIS earchMys
it perGragh atkedlcur ent
{

yGieaph oW £
Mol

Wisited Hodes{Depth FirsD. i
yCiraph &
ADCI Vot PAuEUE ¢
yCiraph st exs
whilp firmyiragn se
l
intngx=
dertifir

 Diapth First Sasech

publs: €18 void maingShing args()
]

l

pitvate stalic vold degmF RIS earchMys
it perGragh atkedlcur ent
{

yGieaph oW £
Mol

Visitad Hodes{Depth Firsh freyraph-ameve st
yGeaph FaceAnd
VBCtOr At £
yCiraph st exs
whilp firmyiragn se

ADCIJEFBGHML

it =
deiic

,E Single Step (% Contreous Fauce | Resure

Figure 38: Depth-first Search Done

3.2.3.6 In-order Tree Traversal

In-order traversal is a technique for recursively
processing the node of a tree in which the left
subtree is processed first, then the root, and finally
the right subtree. The pseudocode of in-order
traversing a binary tree is:

inorder(tree)

begin

if tree is null, return;
inorder(tree.left_subtree);
print(tree.root);
inorder(tree.right subtree);
end

The pseudocode coded in JavaMy is:

/!l In-order Tree Traversal
static String travlListString;

public static void main(String args[])
{
final
final
final

int M N_NCDES = 10;
int MAX_NODES = 32;
Posi ti on ROOT_PGCSI TI ON = new
Posi tion(273, 80);
Random random = new Random();
M/ TreeNode nyTree = new MyTreeNode(
1,1, ROOT_POSITION, null);
Drawabl eString | abel = new
Dr awabl eStri ng(new Posi tion(20, 390),
"Visited Nodes(ln-order):");
Drawabl eString traversal Li st = new
Dr awabl eStri ng(new Position(20, 420));
| abel . set Col or (Col or. bl ue);
traversal Li st. set Col or (Col or.red);
travlListString = new String();

i nt nunber O Nodes = Mat h. abs(
random next | nt () % MAX_NODES) ;
nunber O Nodes = Mat h. max(nunber O Nodes,
M N_NCDES) ;
nunber O Nodes = nyTree. random zeShape(
nunber O Nodes) ;
/1 make the binary tree
myTr ee. r andomi zeVal ues(2);
i nOrder Traversal (nmyTree, traversalList);
/1 in-order traversal the binary tree

}

/'l in-order traversal
private static void inO derTraversal (
MyTreeNode node, Drawabl eString traversal List)

if (!node.isHi dden())
{
i nOrder Traver sal ((MyTr eeNode) node. l eft (),
traversal List);
node. changeCol or (Col or. red);
travlListString = travlListString +
node. getValue()+ " ";
traversal List.setString(travlListString);

15

i nOrder Traver sal ((MyTr eeNode) node. ri ght (),
traversal List);
}

}

This example uses the observable data structure
MyTreeNode. It also demonstrates how to code a
recursive function in JavaMy language. The
recursive function must be coded as a static function
since it is invoked in the static main function. The
algorithm animation is shown in Figures 39-41.

 In-order Tras Traverssl
staic iring FailistString;

public stalic void mainiSiring &
final ink MIN_NODES

= R ink MAX_NODE
final Position ROOT

5 o
trandListString = new
IntnumberCMades
PrnberCNodes = 1
ramberCNodes =¢

e o o o
b 888,858 dhdy

Wisited Hodes{in-order),

iy Treg randomizey
inGrderTraversalinr

¥ Vil oedir bramrs 4
prbeate static void i CrderTron
If{inode sHidden)

[
InCedBITraveasliM

e changus ool
trandListString = trav

 In-order Tras Traverssl
staic iring FailistString;

public stalic void mainiSiring &

final ink MIN_NODES
R ink MAX_NODE
final Position ROOT

IntnumberCMades
FrnberCodes = 1
ramberCNodes =¢

iy Treg randomizey
inGrderTraversalinr

it oedi e
prbeate static void i CrderTron
If{inode sHidden)

[
InCedBITraveasliM

e changus ool
trandListString = trav

[e [(# [Single Step) ™ Comrwous

Figure 40: In-order traversal in progress

M N_NODES) ;

— nunber O Nodes = nyTree. randoni zeShape
S (nunber O Nodes) ;
s ——— /1 make the binary tree
myTr ee. r andomi zeVal ues(2);
preOrder Traversal (myTree, traversal List);
/1 traversal the binary tree
}
P
e =t /1 pre-order tranversal
| b private static void preOrderTraversal (
N M/Tr eeNode node, Drawabl eString traversal List)
——— {
pRST— if (!node.isHidden())
ru:l'cll:lluuf.'_u\:'l' {
B node. changeCol or (Col or. red) ;

travliListString = travlListString +
node. getVal ue()+ " ";
. traversal List.setString(travlListString);
Figure 41: In-order traversal done preQrder Traver sal ((MyTr eeNode) node. | eft (),
traversal List);
preOrder Traver sal ((MyTr eeNode) node. ri ght ()
, traversal List);
}

3.2.3.7 Pre-order Tree Traversal

Pre-order is another technique for recursively }
processing the nodes of a tree. Pre-order is similar
to in-order except that, the root is processed first,
then the left and right subtrees. The pseudo code is:

The animation is shown in Figures 42-44.

o Fre-coder Trow Traversal

#halic String braviListS¥ing,

preorder(tree) s s s

begin
if tree is null, return;

print(tree.root);

preorder(tree.left subtree), :".:ii.“:,:?;“:;n:‘.‘?;i:ﬁf:f::
preorder(tree.right_subtree), I

end Wisited Hodes{Pre-rder). :rmlr stafic voidd preOrderTraversaliby

i (Ingde isHisdens)

The corresponding JavaMy code is:

Gingle S4ep Conbiuous Pause | Resume 6

/!l Pre-order Tree Traversal
static String travlListString;

public static void main(String args[])

{
final int MN_NODES = 10; e e
f| nal | nt IVAX_’\K]IS = 32, Inl.h'.r.'.Inl.cmmnn.’\lHInnu.lrn:.|||
final Position ROOT_POSITION = new P Sl MAO_NODE B 32
Posi tion(273, 80); Fandon andoona B
Random r andom = new Randon{(); AT A rasanies oot et
My TreeNode nyTree = new MyTreeNode(b Cotonc
1,1, ROOT_POSI TION, null); T
Drawabl eString | abel = new ' ' meroReot s WM
Drawabl eStri ng(new Posi tion(20, 390), T —
"Visited Nodes(Pre-order):"); e
Drawabl eString traversal List = new T ——— i SN
Dr awabl eSt ri ng(new Position(20, 420)); U madedstamany
| abel . set Col or (Col or. bl ue); h_mmm

idrandl it

traversal Li st. set Col or (Col or. red);
travlListString = new String();

wavirsalList satEngiraniLL
DOt Tram s al My TrenN:

i nt nunber O Nodes = Mat h. abs(
random nextInt () % MAX_NODES); . .
nunber Of Nodes = Mat h. max(nunber Of Nodes, Figure 43: Pre-order traversal in progress

16

0 Prepedir Tro Travarsal
Static String raviLisSting.

Ut 1t vild manlEting args(
1

Snal int MIN_NODEE = 10;

nal int MAX_NODEE = 32
nal Position ROOT_POEITK
Random randien = niw Fan
MyTroanadn myTine = ndw b
CrawablaSting Lol = nitw [
g trarersalList

[Color blug);
efizalor f

AUABRICTNAGES = Math max
AUBRICTNOGES = myTroe s

Tt randomEevalLSS2)
Dt Tramrsalm Troe, tr
1

0 i Qe trarwersal
Visied Nodes{Pra-orery P S350 vold DO TravirsaliMy

503612 58 21 62 75166632 271377 7970047 9 0 IsHIdAenG)
Soloa(Calor ned
iLIstEting
tEwIngraLE
rsallMyTreoh

[50 | singiestep & Contioous Pavss | Resirns [o] soor

Figure 44: Pre-order traversal done
3.2.3.8 Post-order Tree Traversal

In Post-order traversal the left and right subtrees are
processed first, then the root is processed. The
pseudo code is:

postorder(tree)
begin
if tree is null, return;

postorder(tree.left subtree);
postorder(tree.right_subtree),
print(tree.root);

end

Translated in JavaMy we have:

/! Post-order Tree Traversal
static String travlListString;

public static void main(String args[])

{
final int M N_NODES = 10;
final int MAX NODES = 32;
final Position ROOT_PCSI TION = new

Position(273, 80);
Random r andom = new Randon{();
MyTreeNode nyTree = new MyTreeNode(
1,1, ROOT_PCSI TION, null);
Drawabl eString | abel = new
Dr awabl eSt ri ng(new Position(20, 390),
"Visited Nodes(Post-order):");
Drawabl eString traversal Li st = new
Dr awabl eSt ri ng(new Position(20, 420));
| abel . set Col or (Col or. bl ue);
traversal Li st. set Col or (Col or.red);
travlListString = new String();

i nt nunber O Nodes = Mat h. abs(
random next I nt () % MAX_NODES) ;
nunber O Nodes = Mat h. max(nunber O Nodes,
M N_NCDES) ;

17

nunber O Nodes = nyTree. random zeShape(
nunber O Nodes) ;
/1 make the binary tree
myTr ee. r andomi zeVal ues(2);
post Order Tr aver sal (nmyTr ee,
/'l traversal
}

/'l post-order tranversal
private static void postOderTraversal (
M/Tr eeNode node, Drawabl eString traversal Li st)

traversal List);
the binary tree

if (!node.isHidden())

post Order Traver sal ((MyTr eeNode) node. | ef t ()
, traversal List);
post Or der Traver sal ((MyTr eeNode) node. ri ght ()
, traversal List);
node. changeCol or (Col or. red);
travlListString = travlListString +
node. getValue()+ " ";
traversal List.setString(travlListString);
}
}

The animation of the post-order traversal is shown
in Figure 45-47.

o Fastorder Tron Trawmrsal
stalic String raviListEmng;

publi: static voig main(Eting apsl)

I
,-'°‘.., fival ind MIN_NODEE = 10;

-~ ~— final in2 MAX_NODES = 37,
& fnal Postion ROOT_POSMIO

o o
N A

Wisied Nodes{Post ardedy

TraviLISEEHNG = R SN0

It AUmBAIOMIAeS = Math at
nURAbArCINGARS = Math M
nurAbRrCNGARS = myTobe ra

i Tone rAnGoMERVAIESE.
pOSEOngReTraversskmy T, 1
1

0 poskanter Famersal
etvail S1a1 wild poSBONTarTraveraauib,
I

Hpnode |sHusden0)
postOrdarTraveesal

postOrdarTraversal
nade changeCalar|

o Fastorder Tron Trawmrsal
stalic String raviListEmng;

publi: static voig main(Eting apsl)

I
,-'°‘.., fival ind MIN_NODEE = 10;

-~ ~— final in2 MAX_NODES = 37,
& fnal Postion ROOT_POSMIO

o o
o o e

Wisied Nodes{Post ardedy

TraviLISEEHNG = R SN0

It AUmBAIOMIAeS = Math at
nURAbArCINGARS = Math M
nurAbRrCNGARS = myTobe ra

i Tone rAnGoMERVAIESE.
pOSEOngReTraversskmy T, 1
1

0 poskanter Famersal

etvail S1a1 wild poSBONTarTraveraauib,

I

7011 5067 10554 36 Hpnode |sHusden0)
postOrdarTraveesal
postOrdarTraversal
nade changeCalar|

(5o k sogesn & contnuous Favse | Resim

Figure 46: Post-order traversal in progress

o Fastorder Tron Trawmrsal
stalic String raviListEmng;

publi: static voig main(Eting apsl)
I

Tinal ind MM, rlo IEE = 10

Ro \°°°\°P

Visad NOdes{Post ordary

It AUmBAIOMIAeS = Math at
nURAbArCINGARS = Math M
nurAbRrCNGARS = myTobe ra

i Tone rAnGoMERVAIESE.
pOSEOngReTraversskmy T, 1
1

0 poshonges Famersal
etvail S1a1 wild poSBONTarTraveraauib,
I

Hpnode |sHusden0)

postOrder

Single Step (& Confinuous

Figure 47: Post-order traversal done
3.2.3.9 Level-order Tree Traversal

In a level-order traversal, nodes are processed from
top to bottom, left to right. It is implemented by
using a queue. The JavaMy code of the algorithm is
shown as follows.

/1l Level -order Tree Traversal
static String travlListString;

public static void main(String args[])

{

final int M N_NODES = 10;
final int MAX NODES = 32;
final Position ROOT_POSI TI ON = new

Posi tion(273, 80);
Random random = new Random();
My TreeNode nyTree = new MyTreeNode(
1,1, ROOT_POSITION, null);
Drawabl eString | abel = new
Dr awabl eStri ng(new Posi tion(20, 390),
"Visited Nodes(Level Order):");
Drawabl eString traversal List = new
Dr awabl eSt ri ng(new Position(20, 420));
| abel . set Col or (Col or. bl ue);
traversal Li st. set Col or (Col or.red);
travlListString = new String();

Vect or queue = new Vector();
i nt nunber O Nodes = Mat h. abs(
random next I nt () % MAX_NODES) ;
nunber O Nodes = Mat h. max(nunber O Nodes,
M N_NCDES) ;
nunber O Nodes = nyTree. random zeShape(
nunber O Nodes) ;

myTr ee. r andomi zeVal ues(2);

/1 make the binary tree

| evel Traversal (myTree, queue,
traversal List);

/'l level traversal the binary tree

18

/!l level order traversal

private static void | evel Traversal (MyTreeNode
node, Vector queue, Drawabl eString
traversal Li st)

My Tr eeNode next ;
if (!'node.left().isH dden())

queue. addEl enent (node. l eft());
if (!node.right().isH dden())

queue. addEl enent (node. right());
node. changeCol or (Col or. red);
travlListString = travlListString +

node. getVal ue()+ " ";

traversal List.setString(travlListString);

if (queue.size() > 0)

next = (MyTreeNode) queue.firstEl ement();
queue. r enoveEl ement (next);
| evel Traversal (next, queue,

traversal List);

}
}

The queue in level-order traversal is used to store
nodes that are yet to be visited. When a node is
visited, its children are placed at the end of the
queue, to be visited after the nodes that are already
in the queue. In this example, we choose not to
view the content of the queue, therefore, a class
Vector provided by Java is used instead of the
observable data structure MyQueue. This further
demonstrates that the user can determine which data
structures he/she wants to observe, then chooses the
classes accordingly. The level-order tree traversal
animation is shown in Figure 48-50.

¥ Lewél-crder Tree Triversal
stalic Siring traviListSring;

il stadc vkl main(Eng ash

SN f’
© 00

numberCmaodes = iy Tree r
T ranumizE kst 301,
veTravers i Tree, quour
Wisited Nodesievel Order). W bval ordes frae

priate siatc void mma ersaliyTren

Wy Traatiog nid

Hiddang)
ueUE AIIERME
W gnada righa] isHidden()
QuEUE 3SIER ML

[Giepl|(@ Single S ¢ Contiruges

Figure 48: Level-order Tree Traversal

(S| Single S & Contiruces

Figure 50: Level-order tree traversal done

4. Implementation

This software package is implemented using Java.
Java is a general-purpose object-oriented language.
The AWT and Swing packages of Java provide
extensive components for creating Graphic User
Interfaces. Moreover, its graphics capabilities are
platform independent and hence portable, which
makes it our natural choice for implementation.

To animate a user-defined algorithm, a lexical
analyzer and parser are needed. A lexical analyzer
breaks an input stream of characters into tokens. A
parser reads the input tokens and converts the
tokens to a Java program. There are several ways to
build a lexer and parser. One possibility would be to
code the lexical analyzer and parser completely
from scratch, implementing all string handling and
checking functions, which is a very tedious and

19

error prone process. Another method is to find a
Java parser generator, which reads a grammar
specification and converts it to a Java program that
can recognize matches to the grammar. After
intensive search, we found that JavaCC [10], a
product of Sun Microsystems is currently the most
popular parser generator for use with Java
applications. Consequently, it was our choice. The
parser is generated by two steps: (1) Run JavaCC on
the grammar input file to generate a set of Java files
that implement the parser and the lexer. (2) Compile
all the Java files obtained in step (1). The grammar
file for JavaMy language is shown in Appendix A.

5. Conclusions and future works

In this paper, we present a visualization tool
designed to aid first-year computer science students
learn Data Structures and Algorithms. This tool not
only lets students visualize the commonly used data
structures, but also allows students to write their
own algorithms in a Java similar language -
JavaMy, and observe the execution of the
algorithms. We believe this tool will be an effective
supplement to traditional instruction.

Because of the time limitation, only the most
commonly used data structures are implemented in
this version of the software package, which include
arrays, stacks, queues, binary search tree, binary
heap, priority queue and undirected graph. There
are two ways to add more observable data structures
to this software such as directed graph, weighted
graph, AVL tree, Red Black Tree, AA- tree, splay
tree, hash table, etc. One way is to implement these
data structures in the software. Another approach
would be to develop and implement a mechanism
for the software package to recognize the user-
defined observable data structures, and leave the
implementation to the user. This approach will
allow users to use their own observable data
structures, hence add more flexibility to the
software.

Another possible future enhancement for the
software is to highlight the executing command line
of the user-defined algorithm file. This would help
the user to better follow the execution of the
algorithm.

References

[1] Morris, John, “Programming Languages and
Data Structures”,
http://swww.ee.uwa.edu.au/~plsd210/ds/ds_ToC.ht

ml

[2] Cawsey, Alison, “Data Structures and
Algorithms”,
http://www.cee.hw.ac.uk/~alison/ds98/ds98.html

[3] Owens, Brad “CS300 Data Structures and
Algorithms I”,
http://www.cs.twsu.edu/~bjowens/cs300/

[4] Cohen, Edith “CS270: Combinatorial
Algorithms and Data Structures”,
http://www.cs.berkeley.edu/~edith/cs270/

[5] Goodrich, Michael T. and Tamassia, Roberto,
“Data Structures and Algorithms in Java”,
http://www.cs.brown.edu/courses/cs016/book/

[6] Jarc, Duane J., “Interactive Data Structure
Visualizations”,
http://www.seas.gwu.edu/~idsv/idsv.html

[7] The Graphics, Visualization & Usability (GVU)
Center at Georgia Tech, “XTango”,
http://www.cc.gatech.edu/gvu/softviz/algoanim/xta

ngo.html

[8] The Graphics, Visualization & Usability (GVU)
Center at Georgia Tech, “Polka”,
http://www.cc.gatech.edu/gvu/softviz/algoanim/xta

ngo.html

[9] System Research Centers (SRC) at Compaq
Computer Corporation, “Algorithm Animation at
SRC”,
http://www.research.compag.com/SRC/zeus/home.h
tml

[10] Sun Microsystems, “JavaCC — The Java Parser
Generator”, http://www.metamata.com/javacc/

20

Appendix A JavaMy grammar file

options {
MULTI = true;
NODE_DEFAULT_VA D = true;
JAVA _UNI CODE_ESCAPE = true;

}
PARSER_BEG N(Al gori t hnPar ser)

import java.io.*;
i mport project.*;

public class Al gorithnParser
{
public static void main(String args[])
t hrows Exception {
Al gorit hnPar ser parser;
ASTConpi | ati onUnit node;

if (args.length == 2) {

Systemout. println("Al gorithm
Preprocessor: Reading fromfile " + args[0] +
" ¥

try {

parser = new Al gorithnParser (new
Fil el nput Strean(args[0]));
} catch (Fil eNot FoundException e) {
Systemout. println("Al gorithm
Preprocessor: File " + args[0] + " not
found.");
return;

} else {

Systemout. println("Al gorithm
Preprocessor: Usage is \"java Al gori ht nPar ser
inputfile outputfile\"");

return;

}

try {
node = parser. Conpil ationUnit();
PrintWiter ostr = new PrintWiter(new
FileWiter(args[1]));
node. process(ostr,
ostr.close();
Systemout. println("Al gorithm
Preprocessor: Transformati on conpl eted
successfully.");
} catch (ParseException e) {
Systemout. println("Al gorithm
Preprocessor: Encountered errors during
parse.");
Systemout. println(""+e);
} catch (1 OException e) {
Systemout. println("Al gorithm
Preprocessor: Could not create file " +
args[1]);
}

}
}

PARSER_END(Al gori t hmPar ser)

args[0]);

SPECI AL_TOKEN : /* WHI TE SPACE */

{

| "\t
| I|\nll

I
|
}

u\ru
n\fll

SPECI AL_TOKEN : /* COMVENTS */

<SI NGLE_LI NE_COMMENT: "//" (~["\n",
("\n"l"\r"l"\r\n")>
<FORMAL_COMMENT: "/ **" (~["*"])* "
(___[u*u’u/u] (___[u*u])* n*n))* u/u>
<MULTI _LI NE_COWMENT: "/*" (~["*"

|
I
}

TOKEN : /* RESERVED WORDS AND LI TERALS */
{

(

ANNNNANNANNANNANANNNANNNNNNNNANNNANNNNNNNNANNNANNNNNNNNNNANNNNNNNNNNANNNNNNNNA

SR

ABSTRACT:
BOOLEAN:

BREAK: "b
BYTE: "by
CASE: "ca
CATCH: "c
CHAR: "ch
CLASS. "c
CONST: "c
CONTI NUE:
_DEFAULT:
DO "do"
DOUBLE:

ELSE: "el
EXTENDS:

FALSE: "f
FI NAL: "f
FI NALLY:

FLOAT: "f

FOR: "for"

GOrTo. "go
IF "if"
| MPLEMENT
| MPORT:

I NSTANCEOF:
INT: "int"
| NTERFACE:

LONG "lo
NATI VE:

(<[1)x "))

"abstract"

"bool ean"
reak" >
te" >
se" >
atch" >
ar" >

| ass" >
onst" >

>

"conti nue"

"defaul t"
>

"doubl e" >

se" >
"ext ends"
al se" >
inal" >
"finally"
| oat" >
>

to" >

>

>

>

>

>

>

S: "inpl enents"

"inmport" >
"i nst anceof "

>

ng" >

"native" >

NEW " new' >

NULL: "nu
PACKAGE:
PRI VATE:

PROTECTED:

PUBLI C:
RETURN:
SHORT: "s
STATI C.
SUPER: "s
SW TCH:
SYNCHRONI

THROW "t
THROWS:

TRANSI ENT:

TRUE: "tr

TRY: "try"

vaD: "vo
VOLATI LE:

MYARRAY:
MYSTACK:
MYQUEUE:

" >
"package" >
"private"

hort" >

"static" >

uper" >

"switch" >
ZED: "synchroni zed"
TH'S: "thi

is" >
hrow' >

"throws" >
"transient"

ueu >
>
I du >

>

"vol atile"
VWH LE: "while" >

"MyArray"
n wSt ackll >

"MyQueue"

>

>

"interface"

"protected"
"public" >
"return" >

>

>

>

>

>

>

>

21

MYTREENCDE: " MyTr eeNode" >
DRAWABLESTRI NG " Dr awabl eString" >

< MYHEAP: " My/Heap" >

< MYPQHEAP: " M/PQHeap" >
< MYGRAPH "MG aph" >
<

<

) —————

TOKEN : /* LI TERALS */
{

< | NTEGER LI TERAL:
<DECI MAL_LI TERAL> (["1","L"])?
| <HEX_LITERAL> (["1","L"])?
| <OCTAL_LITERAL> (["I","L"])?

>
| < #DECI MAL_LITERAL: ["1"-"9"] (["
| < #HEX_LITERAL: "0" ["x","X'] ([
"ETUUAT-TE]) 4 >
| < #OCTAL_LITERAL: "0" (["0"-"7"])* >
| < FLOATING POl NT_LI TERAL:
(Lr0r-r e])e v (1701910
(<EXPONENT>) ? (["f","F","d", "D'])?
| ([0" 1)+ (<EXPONENT>) ?
(Lt F
[(["
(L, F
I ([
[, E

-"9"
"D'])?
"9"])+ <EXPONENT>
"D'])?
"9"]) +

OQ.O

(<EXPONENT>) ?
"D

\%

| < #EXPONENT: ["e","E"] (["+",
"9"])+ >
| < CHARACTER LI TERAL:

-1)? (["0"-

I EATCIEANEE B
[(")

(
[“n","t", b, "
I
|
)

)

N

STRI NG_LI TERAL:
I|\l|ll
(N AR AV L VA D)
[("\\"

(
["n","t","b","
I
I
)

—_—— =
—— —
—_——

)
)*
u\uu

}
TOKEN : /* | DENTI FI ERS */

< | DENTI FI ER. <LETTER> (<LETTER>| <DI G T>)* >
| < #LETTER

[
"\u0024",
"\ u0041"-"\uO05a",
"\ u005f ",
"\ u0061"-"\uO07a",
"\ u00c0"-"\u00d6",
"\ u00d8" - "\ uoof 6",

XORASSI GN: "~=" >

REMASSI G\ " %" >

LSH FTASSI GN: "<<=" >

RSI GNEDSHI FTASSI GN: " >>=" >
RUNSI GNEDSHI FTASSI GN: " >>>=" >

< #DIGAT:

[

"\ u0030"-"\u0039"
"\ u0660"-"\u0669"
"\ uo6f 0" -"\ uoe6f 9"
"\ u0966" - "\ u09e6f"
"\ u09e6" - "\ u09ef "
"\ u0a66"-"\ u0a6f"
"\ uOae6"-"\ uOaef"
"\ uOb66" - "\ uObe6f "
"\ uObe7"-"\ uObef"
"\ u0c66"-"\ uOco6f"

"\ u0of 8"-"\uoof f", < RSI GNEDSHI FT: ">>" >
"\ u0100"-"\ulfff", < RUNSI GNEDSHI FT: ">>>" >
"\ u3040"-"\u318f", < PLUSASSIGN: "+=" >
"\ u3300"-"\u337f", < MNUSASSIGN: "-=" >
"\ u3400"-"\u3d2d", < STARASSIGN: "*=" >
"\ u4e00"-"\uofff", < SLASHASSIGN: "/ =" >
"\ uf 900" -"\uf af f" < ANDASSI GN: "&=" >
] < ORASSIGN. "|=" >

<

<

<

<

<

I
I
I
I
I
I
I
I
> |
I
|
I
|
}

/***

* THE ALGORI THM LANGUAGE GRAMVAR STARTS HERE *
***/
/* Program structuring syntax follows. */
ASTConpi | ati onUnit ConpilationUnit()

#Conpi | ati onUni t

"\ uOce6"-"\uOcef" {}
"\ u0d66" - "\ uod6f " {
"\ u0e50" - "\ u0e59"
"\ uOed0"- "\ uOed9" jjtThis.setFirst Token(get Token(1));
"\ul040"-"\ul049"
| (I'nportDeclaration())*
> (BodyDecl aration())*
} <EOF>
{
TOKEN : /* SEPARATORS */ return jjtThis;
{ }
< LPAREN: " (" > }
| < RPAREN: ")" >
| < LBRACE: "{" > voi d | mportDecl aration()
| < RBRACE: "}" > {1
| < LBRACKET: "[" > {
| < RBRACKET: "]1" > “import" Nanme() ["." "*"] ";"
| < SEMCOLON: ;" > }
| < COWA: ", " >
| <DOr: "." > /* Declaration syntax follows. */
} voi d BodyDecl aration()
{}
TOKEN : /* OPERATORS */ {
{ LOOKAHEAD(Met hodDecl ar ati onLookahead())
< ASSIGN:. "=" > Met hodDecl ar ati on()
| < Gr: ">" > |
| <LT: "< > Fi el dDecl arati on()
| < BANG "!" > }
| < TILDE "~" >
| < HOOK: "?" > /1 This production is to determ ne | ookahead
| < COLON: ":" > /lonly.
| < EQ "==" > voi d Met hodDecl ar at i onLookahead()
| <LE "<=" > {}
| <G ">=" >
| < Ne "I=" > ("public" | "protected" | "private" |
| < SCOR "||" > "static" | "abstract" | "final" | "native" |
| < SC_AND: "&&" > "synchroni zed")*
| < INCR "++" > Resul t Type() <IDENTIFIER> "("
| < DECR "--" > }
| < PLUS: "+" >
| < MNUS: "-" > voi d Fi el dDecl aration()
| < STAR "*" > {1}
| < SLASH. "/" > {
| < BIT_AND: "&" > ("public" | "protected" | "private" |
| <BIT_OR "|" > "static" | "final" | "transient" | "volatile"
| < XOR "A" >)*
| < REM "% > (Showvar i abl eDecl arati on()
| < LSHFT: "<<" >

22

| Type() VariableDeclarator() (","
Vari abl eDecl arator())*) ";"

}
voi d ShowVari abl eDecl arati on()
{ Token t;
}
{ { t = getToken(1); }
(("MyArray" <IDENTIFIER> "=" "new'

"MyArray" Argunments()

| "MyStack" <IDENTIFIER> "=" "new
"MyStack" Arguments()

| "MyQueue" <IDENTIFIER> "=" "new
"MyQueue" Argunents()

| "MyHeap" <IDENTIFIER> "=" "new' "MHeap"
Argunent s()

| "MyPQHeap" <IDENTIFIER> "=" "new'
"MyPQHeap" Argunents()

| "MyGaph" <IDENTIFIER> "=" "new
"MyGraph" Argunments()

| "MyTreeNode" <IDENTIFIER> "=" "new'
"MyTr eeNode" Argunents()

| "Drawabl eString" <IDENTIFIER> "=" "new'
"Drawabl eString" Argunments())

{ jjtThis.setFirstToken(t);

jjtThis.setlLast Token(get Token(0));

}
) #ShowBl ock

}
voi d Comma()
Token t;
}
{ " "
({
t = getToken(1);
jjtThis.setFirstToken(t);
jjtThis.setLast Token(get Token(0));
}
) #Speci al Bl ock
}
voi d Vari abl eDecl arat or ()
{}
{

Vari abl eDecl aratorld() ["="
Variablelnitializer()]

}

voi d Vari abl eDecl aratorl d()

{}
{

<IDENTIFIER> ("[" "]")*
}

void Variablelnitializer()

{}

{
Arraylnitializer()

I
Expr essi on()

}

void Arraylnitializer()

{}

23

{
“{" [Variablelnitializer() (LOOKAHEAD(2)
"," Variablelnitializer())*1 [", 1 "}"

}

voi d Met hodDecl arati on()
{}
{

("public" | "protected" | "private"
"static" | "abstract" | "final" | "native"
"synchroni zed")*

Resul t Type() MethodDeclarator() ["throws"
NameLi st ()]

(Block() | ";")

voi d Met hodDecl ar at or ()
{}
{

<| DENTI FI ER> For mal Paraneters() ("[" "]1")*
}
voi d For nal Paranet ers()

{}
{

"(" [Formal Paraneter() (","
For mal Paraneter())*] ")"

}

voi d For mal Paraneter ()

{}
{

["final"] Type() Vari abl eDeclaratorld()
}

void Initializer()

{1
{
["static"] Block()

}

/* Type, nane and expression syntax follows.*/
voi d Type()

{1

{

(PrimitiveType() | Name() | "MArray”

| n WQJeuell | n wst aCkll | n Wl-bap" | " wpq_eapll

| "MyGaph"| " MyTr eeNode" | " Dr awabl eStri ng") (
" n] ")*

void PrinmitiveType()

{}
{

"bool ean"
| "char"
| "byte"
| "short™"
| "int"
| "long"
| "float"
| "double"
}
voi d Resul t Type()
{}
{

"voi d"

| Type()
}

voi d Nane()

/* A | ookahead of 2 is required bel ow since
"Name" can be followed

* py a ".*" when used in the context of an
"I nport Decl aration".

*/

{}

<| DENTI FI ER>

(LOOKAHEAD(2) "." <IDENTIFIER>)*

voi d NaneLi st ()
{}
{

Name()

("," Name())*

/* Expression syntax follows. */
voi d Expression()

{}
{

LOOKAHEAD(Pri mar yExpression()
Assi gnment Qperator ())

Assi gnment ()
I

Condi ti onal Expressi on()

}

voi d Assi gnnent ()

{}

{
Pri mar yExpr essi on() Assi gnment Oper at or ()

Expressi on()

voi d Assi gnnment Oper at or ()

{}
{

n =Il | "% :II | lI/ =Il | n O/G:" | n +=I| | n - :II |
ez | "S> | S>>t | &= | At | ="
}
voi d Condi ti onal Expressi on()

{}
{

Condi tional OrExpression() ["?" Expression()
" Condi tional Expression()]

}
voi d Condi tional O Expression()
{}
{

Condi ti onal AndExpr essi on()

(
Condi ti onal AndExpression())*
}

voi d Conditi onal AndExpr essi on()

{}

{
I ncl usi veOr Expression() ("&&"
I ncl usi veOr Expression())*

}

24

voi d | ncl usi veOr Expressi on()

{}
{

}

Excl usi veOr Expression() ("|"
Excl usi veOr Expression())*

voi d Excl usi veOr Expressi on()

{}
{

}

AndExpression() ("~"

voi d AndExpression()

{}
{

Equal i t yExpression() ("&"
Equal i t yExpression())*

voi d Equal i t yExpression()

{}
{

nstanceO Expression() (("=="

I nstanceO™ Expression())*

}

voi d | nstanceCf Expressi on()

{}
{

]
}

Rel ati onal Expression() [

voi d Rel ati onal Expression()

{}

}

Shift Expression() (("< | ">"
">=") shiftExpression())*

voi d Shi ft Expression()

{}
{

}

Addi tiveExpression() (
) AdditiveExpression())*

(<<

voi d Additi veExpression()

{}
{

Mul tiplicativeExpression() (("+"

Mul tiplicativeExpression())*

}

void MultiplicativeExpression()

{}
{

}

UnaryExpression() (("*" | "/"
Unar yExpression())*

voi d Unar yExpressi on()

{}
{

(

"+" | "-") UnaryExpression()
Pr el ncr enent Expr essi on()
Pr eDecr enent Expr essi on()
Unar yExpr essi onNot Pl usM nus()

"

"o

)

AndExpression())*

"instanceof" Type()

"sss

}

voi d Prel ncrement Expression()

{}
{
"++" PrimaryExpression()
}
voi d PreDecrenent Expressi on()
{}
{
"--" PrimryExpression()
}
voi d Unar yExpr essi onNot Pl usM nus()
{}
{
("~" 1] "!") UnaryExpression()

| LOOKAHEAD(CastLookahead())
Cast Expr essi on()

| PostfixExpression()

}

/1 This production is to determ ne | ookahead
/1only. The LOOKAHEAD specifications

/1 bel ow are not used, but they are there just
//to indicate that we know about

/1l this.

voi d Cast Lookahead()

{}
{

L OOKAHEAD(2)

"(" PrimtiveType()
| LOOKAHEAD(" (" Name() "[")

" (" ’\larre() " [" II] "

(roName() M)t (=t tt | o(r |
<IDENTIFIER> | "this" | "super" | "new' |
Literal ())

voi d Post fi xExpression()

{}

{
Pri mar yExpression() [

}

voi d Cast Expression()
{}
{

L OOKAHEAD(" ("

T "e-t]

PrimtiveType())

"(" Type() ")" UnaryExpression()
| LOOKAHEAD(" (" Name())
"(" Type() ")" UnaryExpressi onNot Pl usM nus()

voi d Pri maryExpressi on()

{}

{
PrimaryPrefix() (LOOKAHEAD(?2)

PrimrySuffix())*

}
void PrimaryPrefix()
{}
{
Literal ()
| Name()
| "this"
| "super"™ "." <I|DENTIFI ER>

25

| "(" Expression() ")"
| AllocationExpression()
}
voi d PrimarySuffix()
E}
L OOKAHEAD(2)
"." "this"
| LOOKAHEAD(2)
"." "class"
| LOOKAHEAD(2)
"." Al ocati onExpression()
| "[" Expression() "]"
| ' <I DENTI FI ER>
| Argunents()
}
void Literal ()
{}
{

<I NTEGER LI TERAL>
| <FLOATI NG PO NT_LI TERAL>
| <CHARACTER LI TERAL>
| <STRI NG LI TERAL>
| Bool eanLiteral ()
| NullLiteral ()
}

voi d Bool eanLiteral ()

{}
{

"true" |

}

void NullLiteral ()
E}

"nul 1"

}

voi d Argunents()

E}
"(" [ArgumentList()] ")"

}

voi d ArgunentList()

{}

{
Expression() (","

"fal se"

Expression())*

voi d All ocati onExpression()

{}
{

LOCKAHEAD(2)
/* Special All ocation()
| LOOKAHEAD(2) */
"new' PrimtiveType() ArrayDi mensions() [
Arraylnitializer()]
| "new' Nane()
(

ArrayDi nmensions() [Arraylnitializer()]
| Argunent s()
)

/* The second LOOKAHEAD specification belowis
to parse to PrinmarySuffix
* if there is an expression between the

B PR
>/
voi d ArrayDi mensi ons()
{}
{

(LOOKAHEAD(2) "[" Expression() "]")+ (
LOOKAHEAD(2) “[" "1")*
}

/* Statenment syntax follows. */
voi d Statenent()

{}
{

L OOKAHEAD(2)

Label edSt at enent ()
| Bl ock()

| EnmptyStatenent()

| Statenment Expression() Comma()
| SwitchStatenent()

| IfStatenent()

| Wil eStatenent ()

| DoStatenent()

| For Statenent ()

| BreakStatenent()

| ContinueStatement ()

| ReturnStatenent ()

| ThrowSt at enent ()

| Synchroni zedSt at ement ()

| TryStatenent ()

}

voi d Label edSt at enrent ()

{}
{
<IDENTI FI ER> ":" Statenent ()
}
voi d Bl ock()
E}
"{" (BlockStatenment())* "}"
}
voi d Bl ockSt at enent ()
{}
{

LOOKAHEAD(["final"™] (Type() <IDENTIFIER>)
| "MArray"| " MyStack”| " MyQueue” | " MyHeap")
Local Vari abl eDecl aration() ";"
| Statement()

}

voi d Local Vari abl eDecl arati on()
{}
{ Showvari abl eDecl arati on()
| ["final"] Type() VariableDeclarator() (
"," Variabl eDeclarator())*
}

voi d EnptySt at enent ()

{}
{ "

}

voi d St at ement Expr essi on()

/* The | ast expansion of this production
accepts nore than the | egal

* Java expansi ons for Statenent Expression.
*/

{}

{

Pr el ncr ement Expr essi on()
| PreDecrenent Expression()
| LOOKAHEAD(Pri maryExpression()
Assi gnment Operator ())
Assi gnment ()
| PostfixExpression()

}

void SwitchStatenent ()
{}
{

"switch" "(" Expression() R
(SwitchLabel () (BlockStatenment())*)*
ll}ll
}

voi d SwitchLabel ()

{}
{

"case" Expression()
| “default" ":"

}

void | fStatenment ()
/*

* The di sanmbi guating al gorithm of JavaCC
automatically binds dangling

* else's to the innernost if statement. The
LOOKAHEAD speci fication

* is to tell JavaCC that we know what we are
doi ng.

*/

{}

{
"if" "(" Expression() ")" Statenent() [

LOOKAHEAD(1) "el se" Statenent ()]

voi d Wil eSt at enent ()

{}
{
"while" "(" Expression() ")" Statement()

}

voi d DoStat enent ()

{}

{
"do" Statenment() "while" "(" Expression()

") Comma()

voi d For St at enent ()

{}
{
"for" "(" [Forlnit()] ";" [Expression()]
[ForUpdate()] ")" Statenent()
}
void Forlnit()
E}

LOOKAHEAD(["final"] Type() <I DENTIFIER>)

Local Vari abl eDecl arati on()
| Statenent ExpressionList()

}

voi d St at ement Expr essi onLi st ()
{}
{ n "

St at enment Expression() (",
St at enent Expression())*

}
voi d For Updat e()
{}
{
St at ement Expr essi onLi st ()
}
voi d BreakSt at enent ()
{}
{
"break" [<IDENTIFIER>]
}
voi d Conti nueSt at enent ()
{}
{
"continue" [<IDENTIFIER>] Commua()
}
voi d ReturnStatenent ()
{}
{
"return" [Expression()]
}
voi d ThrowsSt at enent ()
{}
{
"throw' Expression() ";"
}
voi d Synchroni zedSt at enent ()
{}
{
"synchroni zed" "(" Expression() ")" Bl ock()
}

void TryStatenent()

/* Semantic check required here to make sure
that at |east one

* finally/catch is present.

*/

{}

{
"try" Bl ock()

("catch" "(" Formal Paraneter() ")" Bl ock()

["finally" Block()]
}

27

