
 1

A Tool for Data Structure Visualization and User-defined Algorithm

Animation

TAO CHEN AND TAREK SOBH

Department of Computer Science and engineering
 University of Bridgeport

Bridgeport, CT 06601, USA

Abstract

In this paper, a software application that features the
visualization of commonly used data structures and
their associated insertion and deletion operations is
introduced. In addition, this software can be used to
animate user-defined algorithms.

1. Introduction

Data Structures and Algorithms is a fundamental
course in Computer Science. However, many
students find it difficult because it requires abstract
thinking. It would be very helpful if there was a
visualization tool of data structures such as arrays,
queues, stacks, trees and graphs for students to
experiment with. The tool would allow students to
see how an element is inserted into or deleted from
different data structures, how a tree is traversed in
different order (pre-order, in-order, post-order,
level-order), etc. Moreover, this tool would provide
a simple language, by which students can write their
own algorithms so that the execution of the
algorithm is animated. This project is intended to
create such an exploration environment, in which
students can learn through experimentation. This
tool can be used as an effective supplement to the
traditional classroom education and textbooks for
Data Structures and Algorithms courses. The
software package presented in this paper has the
following functionality.

a. Provides complete visualization for the
widely used data structures such as array,
stack, queue, tree, heap, graph, etc.

b. Provides the animation of common
operations associated with the data
structures, such as inserting an element into

and deleting an element from array, stack,
and queue.

c. Provides animation of simple user-defined
algorithms.

2. Background

The development of technologies and the
evolvement of the World Wide Web have
influenced education. Instructional Web sites and
courses on the Web have grown dramatically. Web-
based courses that consist of the syllabus,
assignments and lecture notes are now widely used.
Instructional Web sites that are dedicated to Data
Structures and algorithms can be easily found by
using Search Engines. To name a few:

http://swww.ee.uwa.edu.au/~plsd210/ds/ds_ToC.ht
ml [1]
http://www.cee.hw.ac.uk/~alison/ds98/ds98.html
[2]
http://www.cs.twsu.edu/~bjowens/cs300/ [3]
http://www.cs.berkeley.edu/~edith/cs270/ [4]

However, The majority of the instructional web
sites explored during this project lack interactive
multimedia.

One of the best sites found that does contain
interactivity is a course site developed for teaching
Data Structures and Algorithms in Java by the
Computer Science Department of Brown University
[5]. This site has a collection of applets that
demonstrate some commonly used data structures
such as queues, stacks, and some famous algorithms
such as merge sort, quick sort, etc. However, these
applets are not complete and lack a common
Graphical User Interface. Another good site in
interactive Data Structure visualizations is

 2

developed by Duane J. Jarc in George Washington
University [6]. This site provides animations in
binary Trees, graphs, and sorting algorithms. But
there is no animation available for algorithms that
are defined by users.

Algorithm animation is a type of program
visualization that is mainly concerned with
displaying the executions of computer algorithms.
Lots of work has already been done in this field. For
example, the XTANGO [7] and POLKA [8]
systems developed by the Graphic, Visualization
and Usability Center (GUV) at Georgia Tech are
general-purpose animation systems, which require
the user to write an algorithm in the C language and
register the events that the user wants to observe
during the execution of the algorithm. However,
these systems are implemented on top of Unix and
X11 Window system, and are not portable to other
platforms. In addition, we feel they are overkill for
a basic Data structures and Algorithms course.

Another algorithm animation system found is
Zeus[9], which is developed by Digital Equipment
Corporation's Systems Research Center. This
system is a little complicated, require from the user
lots of effort to prepare animations. It is targeted at
more advanced application programmers.

Since our software is intended to the aid first year
Computer Science students learning Data Structures
and Algorithms, ease of use becomes our main
consideration. Our approach for the user-defined
algorithm animation is that the user codes the
algorithm in a simple language called JavaMy,
which is very similar to Java. The only effort the
user needs to make is to instantiate the data
structures he/she wants to observe using the
observable data types provided by the software.
After parsing the JavaMy algorithm file, an
animation frame is created and the observable data
structures are added to the frame so that the user can
watch the changes made to the data structures when
the algorithm is executing.

3. Software Package

Before discussing the design of the software
package, an overview of the functionality of the
package is given here. The screenshots on the

following pages should give an idea of how the
software runs.

3.1 Data Structure Visualization

The observable data structures currently available in
this software packages include: array, stack, queue,
binary search tree, heap and graph. They will be
introduced in subsections 3.1.1-3.1.6.

3.1.1 Array

An Array stores a collection of identically typed
objects, which are randomly accessible by a
numeric index. The structure and insert, delete
operations are shown in Figures1-5.

Figure 1: Array

Figure 2: Insert a node into array

 3

Figure 3: Insertion done

Figure 4: Delete a node from array

Figure 5: Deletion done

3.1.2 Stack

A stack is a data structure in which all access is
restricted to the most recently inserted element. The
basic operations of a stack are push, pop and top.
The structure and the push, pop operations are
shown in Figures 6-8.

Figure 6: Stack

Figure 7: Push a node into the stack

3.1.3 Queue

A queue is a data structure that restricts the access
to the least recently inserted item. The basic
operations supported by queues are enqueue and
dequeue, representing insertion to the rear (back)
and removal of the item at the front. Figures 9-11

 4

demonstrate the array-based queue structure and
associated operations.

Figure 8: Pop a node from the stack

Figure 9: Array-based Queue

Figure 10: Enqueue an element to the queue

Figure 11: Dequeue an element from the queue

3.1.4 Binary Search Tree

A binary search tree is a kind of binary tree where
every node�s left subtree has values less than the
node's value, and every right subtree has greater
values. The basic operations are delete, insert and
find as shown in Figures 12-16.

Figure 12: Binary Search Tree

3.1.5 Binary Heap

A Binary heap is a complete tree where every node
has a key more extreme (greater or less) than or
equal to the key of its parent. In this paper, a Max
Heap is implemented. The allowed operations are
deleteMax and insert as shown in Figures 17-19.

 5

Figure 13: Insert an element into the tree

Figure 14: Insertion Done

Figure 15: Delete an element from the tree

Figure 16: Deletion Done

Figure 17: Heap

Figure 18: Delete the Maximum node

 6

Figure19: Deletion done

3.1.6 Graph

A graph consists of a set of vertices and a set of
edges that connect the vertices as shown in Figure
20.

Figure 20: Undirected Graph

3.2 User-defined Algorithm Animation

In this section we describe the steps of animating an
algorithm and the details of the JavaMy language
which is provided by the software and is used for
visualizing the execution of the algorithm.

3.2.1 Steps

To illustrate how the animation of a user-defined
algorithm is done we will use a simple sorting
algorithm -- bubble sort -- as an example to walk
through the steps.

Bubble sort works by repeatedly moving the largest
element to the highest index position of the array. It
focuses on successive adjacent pairs of elements in
the array, either swapping them if they are out of
order or leaving them alone. The algorithm can be
summarized as following.

1. Step through the array of data.
2. While stepping through, if two adjacent values
are not in sorted order, then swap them.
3. When a complete pass of the data has been
conducted, if any swaps have been made, then the
data may still not be sorted. Goto 1.
4. Otherwise, if no swaps were made on the last
pass, then the data is sorted, and the algorithm is
finished.

Before we use the software to visualize the
execution of bubble sort, we need to translate the
above algorithm into JavaMy code. The details of
the JavaMy language can be found in next sub-
section. The bubble sort algorithm translated into
JavaMy reads:

/* Bubble Sort Algorithm */
public static void main(String args[])
{
 final int SIZE = 8;

 MyArray intArray = new MyArray(

AnimatorFrame.ARRAY_POSITION,SIZE);

 for (int i=0; i<SIZE; i++)
 {
 intArray.setValue(

ScreenPanel.getRandom(10, 100), i);
 }

 for (int i=SIZE; i>1; i--)
 {
 for (int j=0; j<i-1; j++)
 {

 7

if (intArray.getInt(j) >
intArray.getInt(j+1)) {

 intArray.swap(j, j+1);
 }
 }
 }
}

The first step is to write the algorithm. The user can
use any text editor to enter and edit the algorithm.
To make it easy to use, the software provides a
simple built-in code editor. By clicking File->New
menu item, the user can enter the code into the text
field as shown in Figure 21.

Figure 21: Algorithm Animator

The second step is to save the entered algorithm
into a file by clicking File->Save as menu item as
shown in Figure 22.

Figure 22: Save Algorithm File

After saving the file, the user can parse it by
clicking the Build->Compile menu item as in
Figure 23.

Figure 23: Parse and Compile Algorithm File

 If the file is edited using another editor, the user
can load the algorithm file by first clicking the File -
> Open menu item, then finding the file name in the
File Open dialogue as shown in Figure 24.

Figure 24: Open an Algorithm File

If no error occurs during the parsing process, the
resulting Java file will be compiled. If errors occur
during the parsing or compilation process, the errors
will be displayed on the text area on the bottom of
the window. The user can then go back to the
algorithm file and make necessary corrections. If
the file is parsed and compiled successfully, a
corresponding message will be displayed as shown
in Figure 25.

 8

Figure 25: Parsed and Compiled Successfully

The user can then click Build->Run menu item to
watch the animation. The animation frame is shown
in Figure 26.

Figure 26: Animation Frame of Bubble Sort

The animation frame consists of the animation
canvas, the user algorithm text field, and the
animation control panel. The animation canvas is
where the data structures used in the algorithm are
displayed. The user-defined algorithm coded in
JavaMy language is displayed in the right hand text
field. The control panel can be used to control the
animation. Users can choose to run the algorithm
animation either continuously or step by step by
clicking the radio button labeled �Continuous� or
�Single Step�. The animation speed can be changed
by clicking the slider bar.

3.2.2 JavaMy and Algorithm Coding

As mentioned earlier, JavaMy is the language used
to code the user-defined algorithm. The syntax of
JavaMy is similar to Java. The difference is in the
program constructs. Every program in Java consists
of at least one class definition. When the class
definition is saved in a file, the file name must be
the class name followed by the �.java� file name
extension. However, in JavaMy the user does not
need to define a class, the coded algorithm is put
into the main() method. That is, the user algorithm
file always starts with
public static void main(String args[])

Moreover, the algorithm file can be named in
anyway the user wants. However, the file name
extension �.javamy� is recommended to separate
the algorithm file coded in JavaMy from other files.

When coding the algorithm, the user is allowed to
make a decision regarding which of the data
structures used in the algorithm he/she wants to
observe, and use the set of the observable data types
provided by the software to define these data
structures. All the observable data types are named
by adding the prefix �My� to the corresponding
normal data types. For instance, the observable
array is named MyArray, and the queue is named
MyQueue, etc. The data structure objects that do
not interest the user can be instantiated by the data
types provided by Java API. The software also
provides some helper Java classes such as
DrawableString, which can be used to add labels,
explanations and other useful information to the
Animation Frame. All the available observable data
type classes, helper classes and their usage can be
found in the Javadoc documentation that comes
with the software.

3.2.3 Examples

In this subsection a few more examples will be
presented on how the algorithm is coded in JavaMy
language and what the final animation looks like.
This will help the user to have a good understanding
of algorithm coding.

3.2.3.1 Balanced Symbol Checking

A balanced symbol checker is a tool to help debug
compiler errors, which checks whether symbols are
balanced. In other words, whether every �{�
corresponds to a �}�, every �[� to a �]�, every �(� to

 9

a �)�, and so on. The basic algorithm is stated as
follows:

Make an empty stack. Read tokens until the end
of the input file. If the token is an opening symbol,
push it onto the stack. If it is a closing symbol and if
the stack is empty, report an error. Otherwise, pop
the stack. If the symbol popped is not the
corresponding opening symbol, then report an error.
At the end of the file, if the stack is not empty, then
report an error.

The above algorithm coded in JavaMy is shown in
the following program:.

/* Balanced Symbol checker is used to check
whether every { corresponds to a }, every [to
a], every (to a). And the squence [()] is
legal, but [(]) is wrong.
 */

public static void main(String arg[])
{
 String input = "{[([([()]}";
 char c, match;
 String errmsg;

 MyArray in = new

MyArray(AnimatorFrame.ARRAY_POSITION,
 input.length());
 MyStack pendingTokens = new

MyStack(AnimatorFrame.STACK_POSITION,
 0);

 for (int i=0; i<input.length(); i++)
 {
 in.setValue(input.charAt(i),i);
 }

 for (int i=0; i<input.length(); i++)
 {
 c = in.getChar(i);
 switch(c)
 {
 case '(':
 case '{':
 case '[':
 pendingTokens.push(c);
 break;

 case ')':
 case '}':
 case ']':
 if (pendingTokens.isEmpty())
 {

 System.out.println("Extraneous "
 + c +" found");

 }
 else
 {
 match = pendingTokens.topChar();
 pendingTokens.pop();
 if (match == '(' && c != ')' ||
 match == '{' && c != '}' ||
 match == '[' && c != ']')

 {
 errmsg = "Found \"" + c + "\"

 does not match \""+match+"\"";
 JOptionPane.showMessageDialog(
 new JPanel() , errmsg,"Error",
 JOptionPane.ERROR_MESSAGE);

 }
 }
 break;

default:
 break;

 }
 }

 while (!pendingTokens.isEmpty())
 {
 match = pendingTokens.topChar();
 pendingTokens.pop();
 errmsg = "Unmatched \"" +

match +"\"";
 JOptionPane.showMessageDialog(new

JPanel(), errmsg, "Error",
JOptionPane.ERROR_MESSAGE);

 }
 }

The program starts with multiple-line comments,
which document programs and improve program
readability. The comment notation in JavaMy is the
same as Java. Multiple-line comments are delimited
with /* and */, and single-line comments are
delimited with //. Following comments is simply a
blank line. Blank lines, space characters and tab
characters are known as white-space. Such
characters are used to make the program easier to
read. They are ignored by the parser. The bold line
indicates the beginning of the real code of the
algorithm. The three lines following the opening
parentheses declare normal variables as in Java,
using the data type provided by the Java
programming language. The next six bold lines
instantiated two observable data structures that will
show on the animation frame. The first one is an
array, which is used to hold the input string, that is,
the string to be checked. The second one is a stack,
which is used to hold the opening symbols. Here,
MyArray and MyStack are used. Both of the
constructors of MyArray and MyStack take two
parameters. One is the Position parameter, which is
used to decide the location of the data structure on
the animation frame. Another parameter is the size
of the array or stack. The rest of the code is the
same as Java. Class MyArray and MyStack
provides most of the commonly used methods, for
example, setters and getters for setting and getting
the values of the elements in the array, respectively,
push(), pop() and methods for peeking the top

 10

element on the stack, etc. Details of those methods
are described in the documentation generated by
Javadoc.

After parsing and compiling the algorithm
successfully, we can run the animation as described
in subsection 3.2.1. The resulting animation frame
is shown in Figure 27.

Figure 27: Animation Frame of Balanced

 Symbol Checking

3.2.3.2 Operator Precedence Parsing algorithm

The operator precedence parsing algorithm converts
an infix expression to a postfix expression. It works
as follows:

Make an empty stack. Go through the infix
expression. If the token read is an operand, we
immediately output it. If it is a close parenthesis, we
pop the stack until an open parenthesis is seen. If it
is an operator, pop all stack symbols until we see a
symbol of lower precedence or a right associative
symbol of equal precedence, then push the operator.
When we reach the end of infix expression, pop all
remaining stack symbols. Everything that is output
and popped from the stack is the converted postfix
expression.

// Filename: InToPost.javamy
// Convert an infix expression into postfix
// expression

public static void main (String args[])
{
 String infix = "1+2*7-9*5";
 DrawableString label1 = new
 DrawableString(new Position(200, 380),
 "The infix expression:");
 DrawableString in = new DrawableString(new

 Position(200, 400), infix);
 DrawableString label2 = new
 DrawableString(new Position(200, 180),
 "The output postfix expression:");
 MyQueue outQue = new MyQueue(

AnimatorFrame.ARRAY_POSITION,0);
 MyStack opStack = new MyStack(

AnimatorFrame.STACK_POSITION, 0);

 int topOp;
 int token;
 int i=0;
 String operand = new String();
 StringBuffer value = new StringBuffer();

 Precedence.initPrecTable();

 while (i< infix.length())
 {
 switch(infix.charAt(i))
 {
 case '^':
 token = Precedence.EXP;
 i++;
 break;
 case '/':
 token = Precedence.DIV;
 i++;
 break;
 case '*':
 token = Precedence.MULT;
 i++;
 break;
 case '(':
 token = Precedence.OPAREN;
 i++;
 break;
 case ')':
 token = Precedence.CPAREN;
 i++;
 break;
 case '+':
 token = Precedence.PLUS;
 i++;
 break;
 case '-':
 token = Precedence.MINUS;
 i++;
 break;
 default: //operand
 value.delete(0, value.length());
 char c = infix.charAt(i);
 while (c!='^' && c!='/' && c!='*'
 && c!='(' && c!=')' && c!='+'

&& c!='-' && c!=' ')
 {
 value.append(c);
 if (++i>=infix.length())
 break;
 c = infix.charAt(i);
 }

 token = Precedence.VALUE;
 operand = new String(value);
 }

 switch(token)
 {
 case Precedence.VALUE:

 11

 outQue.enqueue(operand);
 break;
 case Precedence.CPAREN:
 while((topOp = opStack.topInt())

!= Precedence.OPAREN && topOp !=
Precedence.EOL)

 { //pop and output operators on the
//stack until meet the open parenthesis

 outQue.enqueue(Precedence.token2char(
topOp));

 opStack.pop();
 }
 if(topOp == Precedence.OPAREN)
 {//Get rid of opening parentheseis
 opStack.pop(); }
 else
 { System.out.println(

 "Missing open parenthesis");
 token = Precedence.ERR;
 }
 break;
 default: // General operator case
 if (!opStack.isEmpty())
 {
 topOp = Precedence.char2token(

opStack.topChar());
 while(((Precedence)Precedence.

 precTable.elementAt(token)).
 inputSymbol <=((Precedence)
 Precedence.precTable.elementAt(

topOp)).topOfStack)
 {
 if (topOp==Precedence.OPAREN)
 {
 System.out.println(

 “Unbalanced parentheses");
 token = Precedence.ERR;
 break;
 }

 outQue.enqueue(
 Precedence.token2char(topOp));

 opStack.pop();
 if (opStack.isEmpty())
 break;
 topOp = Precedence.char2token(

opStack.topChar());
 }
 }
 if (token != Precedence.EOL)
 {
 opStack.push(

 Precedence.token2char(token));
 }
 else
 break;
 }//end switch

 if (token == Precedence.ERR)
 break;
 } // end for

 while (!opStack.isEmpty())
 {// pop up all remaining stack symbols
 outQue.enqueue(opStack.topChar());
 opStack.pop();
 }
}

In this example, two observable data structures and
a helper class are used, namely, MyQueue, MyStack
and DrawableString. The queue is used to store the
resulting postfix expression, and the stack is used to
hold the operators. The DrawableStrings add some
nice labels in the animation frame as shown in
Figure 28 and 29, which make the animation
clearer. The constructor of the MyQueue class also
takes position and size as the parameters. The
DrawableString takes two parameters of type
Position and String, respectively. The String
parameter passed is the string that will show on the
animation frame.

Figure 28: Infix to Postfix animation in progress

Figure 29: Infix to Postfix animation done

3.2.3.3 Heap Sort Algorithm

Heap sort is an algorithm to sort by building a heap,
then repeatedly extracting the minimum item. An
example heap sort written in JavaMy is shown as
follows:

 12

 public static void main(String args[])
 {
 final int MIN_NODES = 10;
 final int MAX_NODES = 32;
 final Position ROOT_POSITION = new

 Position(273, 80);
 int numberOfNodes;
 Random random = new Random();
 MyHeap myheap = new MyHeap(ROOT_POSITION);
 DrawableString nodeLabel1 = new

 DrawableString(ROOT_POSITION);
 DrawableString nodeLabel2 = new

DrawableString(ROOT_POSITION);
 DrawableString label1 = new

DrawableString(new Position(20, 370),
"Before Sort:");

 DrawableString b4Sort = new
DrawableString(new Position(20, 390));

 DrawableString label2 = new DrawableString
(new Position(20, 440), "After Sort:");

 DrawableString afterSort = new
DrawableString(new Position(20, 460));

 int values[] = new int[MAX_NODES];
 numberOfNodes = Math.abs(random.nextInt()

 % (MAX_NODES / 2)) + MIN_NODES;
 String temp = "";

 // get the node values
 for (int i = 1; i <= numberOfNodes; i++)
 values[i] = Math.abs(

random.nextInt()%100);

 for (int i=1; i<=numberOfNodes; i++)
 temp = temp + values[i]+" ";

 b4Sort.setString(temp);
 myheap.makeHeap(values, numberOfNodes,

nodeLabel1, nodeLabel2);

 // Performing Sort
 int i = numberOfNodes;
 while (i > 1)
 {
 myheap.root.swapNodes(myheap.heap[i],

 nodeLabel1, nodeLabel2);
myheap.heap[i].changeColor();

 myheap.root.reheapDown(--i, nodeLabel1,
 nodeLabel2);

 }
 myheap.root.changeColor();

 //output the sort result
 temp = "";
 for (int j=1; j<=numberOfNodes; j++)
 temp = temp+myheap.heap[j].getString()

 +" ";
 afterSort.setString(temp);
}

This example demonstrates the usage of the
observable data type MyHeap. The resulting
animation frames are shown in Figures 30-32.

Figure 30 : Before Heap Sort

 Figure 31: Heap Building in progress

 Figure 32: Heap Sort Done

 13

3.2.3.4 Breadth-first Search Algorithm

The breadth-first search algorithm takes a graph and
a vertex in the graph known as the source, and visits
(performs functions on) each node that can be
reached from the source by traversing the edges. In
doing so, it is easy to determine which vertices can
be reached from the source. The algorithm for
breadth-first search from a source vertex s in a
graph g is as follows:

enqueue the source vertex;
repeat
 dequeue u;
 perform any relevant operations on u;
 enqueue all the neighbors of u;
until the queue is empty

The algorithm coded in JavaMy is:
// Breadth First Search
public static void main(String args[])
{
 final Position GRAPH_POSITION = new
 Position(80, 80);
 MyGraph myGraph = new MyGraph(

GRAPH_POSITION, 4, 8, true);
 DrawableString label = new DrawableString(

new Position(20, 390),
"Visited Nodes(Breadth First):");

 DrawableString traversalList = new
DrawableString(new Position(20, 420));

 label.setColor(Color.blue);
 traversalList.setColor(Color.red);
 myGraph.makeGraph(2,2);
 myGraph.init();
 // search the graph
 int depth = 0;
 int current = myGraph.initSearch(false);
 Vector nextQueues[] = new

Vector[myGraph.getNumOfNodes()];
 nextQueues[depth] = new Vector();
 Position positions[] = new Position[1];
 positions[0] =

myGraph.nodePosition(current);
 myGraph.circle.moveTo(positions);
 myGraph.traceAndMark(current,

traversalList);
 myGraph.setNexts(current,

nextQueues[depth]);
 nextQueues[++depth] = new Vector();
 while (!myGraph.empty(

nextQueues[depth - 1]))
 {
 current = myGraph.getNext(

nextQueues[depth - 1]);
 positions[0] =

myGraph.nodePosition(current);
 myGraph.circle.moveTo(positions);
 myGraph.traceAndMark(current,

traversalList);
 myGraph.setNexts(current,

nextQueues[depth]);
 if (nextQueues[depth - 1].size() == 0)
 nextQueues[++depth] = new Vector();
 }

 myGraph.circle.hide();
}

This example demonstrates usage of the observable
data structure MyGraph. Some snapshots of the
animation are shown in Figures 33-35.

Figure 33: Graph to be searched

Figure 34: Breadth-first Search in progress

Figure 35: Breadth-first Search done

 14

3.2.3.5 Depth-first Search Algorithm

Depth first search is another way of traversing
graphs, which is closely related to a preorder
traversal of a tree.

The algorithm coded in JavaMy:

// Depth First Search
public static void main(String args[])
{
 final Position GRAPH_POSITION = new

Position(80, 80);
 MyGraph myGraph = new MyGraph(

GRAPH_POSITION, 4, 8, true);
 DrawableString label = new

DrawableString(new Position(20, 390),
"Visited Nodes(Depth First):");

 DrawableString traversalList = new
 DrawableString(new Position(20, 420));
 label.setColor(Color.blue);
 traversalList.setColor(Color.red);
 myGraph.makeGraph(2,2);
 myGraph.init();
 int current = myGraph.initSearch(true);
 // search the graph
 depthFirstSearch(myGraph,

 current,traversalList);
 myGraph.arrow.hide();
}

private static void depthFirstSearch(MyGraph
myGraph, int current,DrawableString
traversalList)
{
 if (!myGraph.marked[current])
 {
 myGraph.arrow.setDirection(

myGraph.nodePosition(current), true);
 Position positions[] = new Position[1];
 positions[0]=

myGraph.nodePosition(current);
 myGraph.arrow.moveTo(positions);
 myGraph.traceAndMark(current,

traversalList);
 Vector nextQueue = new Vector();
 myGraph.setNexts(current, nextQueue);
 while (!myGraph.empty(nextQueue))
 {
 int next = myGraph.getNext(nextQueue);
 depthFirstSearch(myGraph, next,

traversalList);

 myGraph.arrow.setDirection(

 myGraph.nodePosition(current), false);
 positions[0] =

myGraph.nodePosition(current);

 myGraph.arrow.moveTo(positions);
 myGraph.traceAndMark(current,

traversalList);
 }
 }//end if
}

This example uses the observable data structure
MyGraph and the helper class DrawableString. The
resulting animation is shown in Figures 36-38.

Figure 36: Graph to be Depth-first searched

Figure 37: Depth-first Search in progress

Figure 38: Depth-first Search Done

 15

3.2.3.6 In-order Tree Traversal

In-order traversal is a technique for recursively
processing the node of a tree in which the left
subtree is processed first, then the root, and finally
the right subtree. The pseudocode of in-order
traversing a binary tree is:

inorder(tree)
begin
if tree is null, return;
inorder(tree.left_subtree);
print(tree.root);
inorder(tree.right_subtree);
end

The pseudocode coded in JavaMy is:

// In-order Tree Traversal
static String travlListString;

public static void main(String args[])
{
 final int MIN_NODES = 10;
 final int MAX_NODES = 32;
 final Position ROOT_POSITION = new

Position(273, 80);
 Random random = new Random();
 MyTreeNode myTree = new MyTreeNode(

1,1,ROOT_POSITION, null);
 DrawableString label = new

DrawableString(new Position(20, 390),
"Visited Nodes(In-order):");

 DrawableString traversalList = new
DrawableString(new Position(20, 420));

 label.setColor(Color.blue);
 traversalList.setColor(Color.red);
 travlListString = new String();

 int numberOfNodes = Math.abs(

random.nextInt() % MAX_NODES);
 numberOfNodes = Math.max(numberOfNodes,

MIN_NODES);
 numberOfNodes = myTree.randomizeShape(

numberOfNodes);
 // make the binary tree
 myTree.randomizeValues(2);
 inOrderTraversal(myTree, traversalList);

// in-order traversal the binary tree
}

// in-order traversal
private static void inOrderTraversal(
MyTreeNode node, DrawableString traversalList)
{
 if (!node.isHidden())
 {
 inOrderTraversal((MyTreeNode)node.left(),

traversalList);
 node.changeColor(Color.red);
 travlListString = travlListString +

node.getValue()+ " ";
 traversalList.setString(travlListString);

 inOrderTraversal((MyTreeNode)node.right(),

traversalList);
 }

}

This example uses the observable data structure
MyTreeNode. It also demonstrates how to code a
recursive function in JavaMy language. The
recursive function must be coded as a static function
since it is invoked in the static main function. The
algorithm animation is shown in Figures 39-41.

Figure 39: In-order traversal of a binary tree

Figure 40: In-order traversal in progress

 16

Figure 41: In-order traversal done

3.2.3.7 Pre-order Tree Traversal

Pre-order is another technique for recursively
processing the nodes of a tree. Pre-order is similar
to in-order except that, the root is processed first,
then the left and right subtrees. The pseudo code is:

preorder(tree)
begin
if tree is null, return;

print(tree.root);
preorder(tree.left_subtree);
preorder(tree.right_subtree);
end

The corresponding JavaMy code is:

// Pre-order Tree Traversal
static String travlListString;

public static void main(String args[])
{
 final int MIN_NODES = 10;
 final int MAX_NODES = 32;
 final Position ROOT_POSITION = new
 Position(273, 80);
 Random random = new Random();
 MyTreeNode myTree = new MyTreeNode(

1,1,ROOT_POSITION, null);
 DrawableString label = new

DrawableString(new Position(20, 390),
"Visited Nodes(Pre-order):");

 DrawableString traversalList = new
DrawableString(new Position(20, 420));

 label.setColor(Color.blue);
 traversalList.setColor(Color.red);
 travlListString = new String();

 int numberOfNodes = Math.abs(

random.nextInt() % MAX_NODES);
 numberOfNodes = Math.max(numberOfNodes,

MIN_NODES);
 numberOfNodes = myTree.randomizeShape

(numberOfNodes);
 // make the binary tree
 myTree.randomizeValues(2);
 preOrderTraversal(myTree, traversalList);
 // traversal the binary tree
}

// pre-order tranversal
private static void preOrderTraversal(
MyTreeNode node, DrawableString traversalList)
{
 if (!node.isHidden())
 {
 node.changeColor(Color.red);
 travlListString = travlListString +

node.getValue()+ " ";
 traversalList.setString(travlListString);
 preOrderTraversal((MyTreeNode)node.left(),

traversalList);
 preOrderTraversal((MyTreeNode)node.right()

, traversalList);
 }
}

The animation is shown in Figures 42-44.

Figure 42: Pre-order traversal a binary tree

Figure 43: Pre-order traversal in progress

 17

Figure 44: Pre-order traversal done

3.2.3.8 Post-order Tree Traversal

In Post-order traversal the left and right subtrees are
processed first, then the root is processed. The
pseudo code is:

postorder(tree)
begin
if tree is null, return;

postorder(tree.left_subtree);
postorder(tree.right_subtree);
print(tree.root);
end

Translated in JavaMy we have:

// Post-order Tree Traversal
static String travlListString;

public static void main(String args[])
{
 final int MIN_NODES = 10;
 final int MAX_NODES = 32;
 final Position ROOT_POSITION = new

Position(273, 80);
 Random random = new Random();
 MyTreeNode myTree = new MyTreeNode(

1,1,ROOT_POSITION, null);
 DrawableString label = new

DrawableString(new Position(20, 390),
"Visited Nodes(Post-order):");

 DrawableString traversalList = new
DrawableString(new Position(20, 420));

 label.setColor(Color.blue);
 traversalList.setColor(Color.red);
 travlListString = new String();

 int numberOfNodes = Math.abs(

random.nextInt() % MAX_NODES);
 numberOfNodes = Math.max(numberOfNodes,

MIN_NODES);

 numberOfNodes = myTree.randomizeShape(
numberOfNodes);

 // make the binary tree
 myTree.randomizeValues(2);
 postOrderTraversal(myTree, traversalList);
 // traversal the binary tree
}

// post-order tranversal
private static void postOrderTraversal(
 MyTreeNode node,DrawableString traversalList)
{
 if (!node.isHidden())
 {
 postOrderTraversal((MyTreeNode)node.left()

, traversalList);
 postOrderTraversal((MyTreeNode)node.right()

, traversalList);
 node.changeColor(Color.red);
 travlListString = travlListString +

node.getValue()+ " ";
 traversalList.setString(travlListString);
 }
}

The animation of the post-order traversal is shown
in Figure 45-47.

Figure 45: Post-order traversal

Figure 46: Post-order traversal in progress

 18

Figure 47: Post-order traversal done

3.2.3.9 Level-order Tree Traversal

In a level-order traversal, nodes are processed from
top to bottom, left to right. It is implemented by
using a queue. The JavaMy code of the algorithm is
shown as follows.

// Level-order Tree Traversal
static String travlListString;

public static void main(String args[])
{
 final int MIN_NODES = 10;
 final int MAX_NODES = 32;
 final Position ROOT_POSITION = new

Position(273, 80);
 Random random = new Random();
 MyTreeNode myTree = new MyTreeNode(

1,1,ROOT_POSITION, null);
 DrawableString label = new

DrawableString(new Position(20, 390),
"Visited Nodes(Level Order):");

 DrawableString traversalList = new
DrawableString(new Position(20, 420));

 label.setColor(Color.blue);
 traversalList.setColor(Color.red);
 travlListString = new String();

 Vector queue = new Vector();
 int numberOfNodes = Math.abs(

random.nextInt() % MAX_NODES);
 numberOfNodes = Math.max(numberOfNodes,

MIN_NODES);
 numberOfNodes = myTree.randomizeShape(

numberOfNodes);

 myTree.randomizeValues(2);
 // make the binary tree
 levelTraversal(myTree, queue,

traversalList);
 // level traversal the binary tree
}

// level order traversal
private static void levelTraversal(MyTreeNode

node, Vector queue, DrawableString
traversalList)

{
 MyTreeNode next;
 if (!node.left().isHidden())
 queue.addElement(node.left());
 if (!node.right().isHidden())
 queue.addElement(node.right());
 node.changeColor(Color.red);
 travlListString = travlListString +

node.getValue()+ " ";
 traversalList.setString(travlListString);

 if (queue.size() > 0)
 {
 next = (MyTreeNode) queue.firstElement();
 queue.removeElement(next);
 levelTraversal(next, queue,

traversalList);
 }
}

The queue in level-order traversal is used to store
nodes that are yet to be visited. When a node is
visited, its children are placed at the end of the
queue, to be visited after the nodes that are already
in the queue. In this example, we choose not to
view the content of the queue, therefore, a class
Vector provided by Java is used instead of the
observable data structure MyQueue. This further
demonstrates that the user can determine which data
structures he/she wants to observe, then chooses the
classes accordingly. The level-order tree traversal
animation is shown in Figure 48-50.

Figure 48: Level-order Tree Traversal

 19

Figure 49: Level-order tree traversal in progress

Figure 50: Level-order tree traversal done

4. Implementation

This software package is implemented using Java.
Java is a general-purpose object-oriented language.
The AWT and Swing packages of Java provide
extensive components for creating Graphic User
Interfaces. Moreover, its graphics capabilities are
platform independent and hence portable, which
makes it our natural choice for implementation.

To animate a user-defined algorithm, a lexical
analyzer and parser are needed. A lexical analyzer
breaks an input stream of characters into tokens. A
parser reads the input tokens and converts the
tokens to a Java program. There are several ways to
build a lexer and parser. One possibility would be to
code the lexical analyzer and parser completely
from scratch, implementing all string handling and
checking functions, which is a very tedious and

error prone process. Another method is to find a
Java parser generator, which reads a grammar
specification and converts it to a Java program that
can recognize matches to the grammar. After
intensive search, we found that JavaCC [10], a
product of Sun Microsystems is currently the most
popular parser generator for use with Java
applications. Consequently, it was our choice. The
parser is generated by two steps: (1) Run JavaCC on
the grammar input file to generate a set of Java files
that implement the parser and the lexer. (2) Compile
all the Java files obtained in step (1). The grammar
file for JavaMy language is shown in Appendix A.

5. Conclusions and future works

In this paper, we present a visualization tool
designed to aid first-year computer science students
learn Data Structures and Algorithms. This tool not
only lets students visualize the commonly used data
structures, but also allows students to write their
own algorithms in a Java similar language -
JavaMy, and observe the execution of the
algorithms. We believe this tool will be an effective
supplement to traditional instruction.

Because of the time limitation, only the most
commonly used data structures are implemented in
this version of the software package, which include
arrays, stacks, queues, binary search tree, binary
heap, priority queue and undirected graph. There
are two ways to add more observable data structures
to this software such as directed graph, weighted
graph, AVL tree, Red Black Tree, AA- tree, splay
tree, hash table, etc. One way is to implement these
data structures in the software. Another approach
would be to develop and implement a mechanism
for the software package to recognize the user-
defined observable data structures, and leave the
implementation to the user. This approach will
allow users to use their own observable data
structures, hence add more flexibility to the
software.

Another possible future enhancement for the
software is to highlight the executing command line
of the user-defined algorithm file. This would help
the user to better follow the execution of the
algorithm.

 20

References

[1] Morris, John, �Programming Languages and
Data Structures�,
http://swww.ee.uwa.edu.au/~plsd210/ds/ds_ToC.ht

ml

[2] Cawsey, Alison, �Data Structures and
Algorithms�,
http://www.cee.hw.ac.uk/~alison/ds98/ds98.html

[3] Owens, Brad �CS300 Data Structures and
Algorithms I�,
http://www.cs.twsu.edu/~bjowens/cs300/

[4] Cohen, Edith �CS270: Combinatorial
Algorithms and Data Structures�,
http://www.cs.berkeley.edu/~edith/cs270/

[5] Goodrich, Michael T. and Tamassia, Roberto,
�Data Structures and Algorithms in Java�,
http://www.cs.brown.edu/courses/cs016/book/

[6] Jarc, Duane J., �Interactive Data Structure
Visualizations�,
http://www.seas.gwu.edu/~idsv/idsv.html

[7] The Graphics, Visualization & Usability (GVU)
Center at Georgia Tech, �XTango�,
http://www.cc.gatech.edu/gvu/softviz/algoanim/xta
ngo.html

[8] The Graphics, Visualization & Usability (GVU)
Center at Georgia Tech, �Polka�,
http://www.cc.gatech.edu/gvu/softviz/algoanim/xta
ngo.html

[9] System Research Centers (SRC) at Compaq
Computer Corporation, �Algorithm Animation at
SRC�,
http://www.research.compaq.com/SRC/zeus/home.h
tml

[10] Sun Microsystems, �JavaCC � The Java Parser
Generator�, http://www.metamata.com/javacc/

Appendix A JavaMy grammar file

options {
 MULTI = true;
 NODE_DEFAULT_VOID = true;
 JAVA_UNICODE_ESCAPE = true;
}

PARSER_BEGIN(AlgorithmParser)

import java.io.*;
import project.*;

public class AlgorithmParser
{
 public static void main(String args[])

throws Exception {
 AlgorithmParser parser;
 ASTCompilationUnit node;

 if (args.length == 2) {
 System.out.println("Algorithm
Preprocessor: Reading from file " + args[0] +
" . . .");
 try {
 parser = new AlgorithmParser(new
FileInputStream(args[0]));
 } catch (FileNotFoundException e) {
 System.out.println("Algorithm
Preprocessor: File " + args[0] + " not
found.");
 return;
 }
 } else {
 System.out.println("Algorithm
Preprocessor: Usage is \"java AlgorihtmParser
inputfile outputfile\"");
 return;
 }
 try {
 node = parser.CompilationUnit();
 PrintWriter ostr = new PrintWriter(new
FileWriter(args[1]));
 node.process(ostr, args[0]);
 ostr.close();
 System.out.println("Algorithm
Preprocessor: Transformation completed
successfully.");
 } catch (ParseException e) {
 System.out.println("Algorithm
Preprocessor: Encountered errors during
parse.");
 System.out.println(""+e);
 } catch (IOException e) {
 System.out.println("Algorithm
Preprocessor: Could not create file " +
args[1]);
 }
 }
}

PARSER_END(AlgorithmParser)

SPECIAL_TOKEN : /* WHITE SPACE */
{
 " "
| "\t"
| "\n"

 21

| "\r"
| "\f"
}

SPECIAL_TOKEN : /* COMMENTS */
{
 <SINGLE_LINE_COMMENT: "//" (~["\n","\r"])*
("\n"|"\r"|"\r\n")>
| <FORMAL_COMMENT: "/**" (~["*"])* "*" ("*" |
(~["*","/"] (~["*"])* "*"))* "/">
| <MULTI_LINE_COMMENT: "/*" (~["*"])* "*" ("*"
| (~["*","/"] (~["*"])* "*"))* "/">
}

TOKEN : /* RESERVED WORDS AND LITERALS */
{
 < ABSTRACT: "abstract" >
| < BOOLEAN: "boolean" >
| < BREAK: "break" >
| < BYTE: "byte" >
| < CASE: "case" >
| < CATCH: "catch" >
| < CHAR: "char" >
| < CLASS: "class" >
| < CONST: "const" >
| < CONTINUE: "continue" >
| < _DEFAULT: "default" >
| < DO: "do" >
| < DOUBLE: "double" >
| < ELSE: "else" >
| < EXTENDS: "extends" >
| < FALSE: "false" >
| < FINAL: "final" >
| < FINALLY: "finally" >
| < FLOAT: "float" >
| < FOR: "for" >
| < GOTO: "goto" >
| < IF: "if" >
| < IMPLEMENTS: "implements" >
| < IMPORT: "import" >
| < INSTANCEOF: "instanceof" >
| < INT: "int" >
| < INTERFACE: "interface" >
| < LONG: "long" >
| < NATIVE: "native" >
| < NEW: "new" >
| < NULL: "null" >
| < PACKAGE: "package">
| < PRIVATE: "private" >
| < PROTECTED: "protected" >
| < PUBLIC: "public" >
| < RETURN: "return" >
| < SHORT: "short" >
| < STATIC: "static" >
| < SUPER: "super" >
| < SWITCH: "switch" >
| < SYNCHRONIZED: "synchronized" >
| < THIS: "this" >
| < THROW: "throw" >
| < THROWS: "throws" >
| < TRANSIENT: "transient" >
| < TRUE: "true" >
| < TRY: "try" >
| < VOID: "void" >
| < VOLATILE: "volatile" >
| < WHILE: "while" >
| < MYARRAY: "MyArray" >
| < MYSTACK: "MyStack">
| < MYQUEUE: "MyQueue" >

| < MYHEAP: "MyHeap" >
| < MYPQHEAP: "MyPQHeap" >
| < MYGRAPH: "MyGraph" >
| < MYTREENODE: "MyTreeNode">
| < DRAWABLESTRING: "DrawableString" >
}

TOKEN : /* LITERALS */
{
 < INTEGER_LITERAL:
 <DECIMAL_LITERAL> (["l","L"])?
 | <HEX_LITERAL> (["l","L"])?
 | <OCTAL_LITERAL> (["l","L"])?
 >
| < #DECIMAL_LITERAL: ["1"-"9"] (["0"-"9"])* >
| < #HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-
"f","A"-"F"])+ >
| < #OCTAL_LITERAL: "0" (["0"-"7"])* >
| < FLOATING_POINT_LITERAL:
 (["0"-"9"])+ "." (["0"-"9"])*
(<EXPONENT>)? (["f","F","d","D"])?
 | "." (["0"-"9"])+ (<EXPONENT>)?
(["f","F","d","D"])?
 | (["0"-"9"])+ <EXPONENT>
(["f","F","d","D"])?
 | (["0"-"9"])+ (<EXPONENT>)?
["f","F","d","D"]
 >
| < #EXPONENT: ["e","E"] (["+","-"])? (["0"-
"9"])+ >
| < CHARACTER_LITERAL:
 "'"
 ((~["'","\\","\n","\r"])
 | ("\\"
 (
["n","t","b","r","f","\\","'","\""]
 | ["0"-"7"] (["0"-"7"])?
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)
 "'"
 >
| < STRING_LITERAL:
 "\""
 ((~["\"","\\","\n","\r"])
 | ("\\"
 (
["n","t","b","r","f","\\","'","\""]
 | ["0"-"7"] (["0"-"7"])?
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)*
 "\""
 >
}

TOKEN : /* IDENTIFIERS */
{
 < IDENTIFIER: <LETTER> (<LETTER>|<DIGIT>)* >
| < #LETTER:
 [
 "\u0024",
 "\u0041"-"\u005a",
 "\u005f",
 "\u0061"-"\u007a",
 "\u00c0"-"\u00d6",
 "\u00d8"-"\u00f6",

 22

 "\u00f8"-"\u00ff",
 "\u0100"-"\u1fff",
 "\u3040"-"\u318f",
 "\u3300"-"\u337f",
 "\u3400"-"\u3d2d",
 "\u4e00"-"\u9fff",
 "\uf900"-"\ufaff"
]
 >
| < #DIGIT:
 [
 "\u0030"-"\u0039",
 "\u0660"-"\u0669",
 "\u06f0"-"\u06f9",
 "\u0966"-"\u096f",
 "\u09e6"-"\u09ef",
 "\u0a66"-"\u0a6f",
 "\u0ae6"-"\u0aef",
 "\u0b66"-"\u0b6f",
 "\u0be7"-"\u0bef",
 "\u0c66"-"\u0c6f",
 "\u0ce6"-"\u0cef",
 "\u0d66"-"\u0d6f",
 "\u0e50"-"\u0e59",
 "\u0ed0"-"\u0ed9",
 "\u1040"-"\u1049"
]
 >
}

TOKEN : /* SEPARATORS */
{
 < LPAREN: "(" >
| < RPAREN: ")" >
| < LBRACE: "{" >
| < RBRACE: "}" >
| < LBRACKET: "[" >
| < RBRACKET: "]" >
| < SEMICOLON: ";" >
| < COMMA: "," >
| < DOT: "." >
}

TOKEN : /* OPERATORS */
{
 < ASSIGN: "=" >
| < GT: ">" >
| < LT: "<" >
| < BANG: "!" >
| < TILDE: "~" >
| < HOOK: "?" >
| < COLON: ":" >
| < EQ: "==" >
| < LE: "<=" >
| < GE: ">=" >
| < NE: "!=" >
| < SC_OR: "||" >
| < SC_AND: "&&" >
| < INCR: "++" >
| < DECR: "--" >
| < PLUS: "+" >
| < MINUS: "-" >
| < STAR: "*" >
| < SLASH: "/" >
| < BIT_AND: "&" >
| < BIT_OR: "|" >
| < XOR: "^" >
| < REM: "%" >
| < LSHIFT: "<<" >

| < RSIGNEDSHIFT: ">>" >
| < RUNSIGNEDSHIFT: ">>>" >
| < PLUSASSIGN: "+=" >
| < MINUSASSIGN: "-=" >
| < STARASSIGN: "*=" >
| < SLASHASSIGN: "/=" >
| < ANDASSIGN: "&=" >
| < ORASSIGN: "|=" >
| < XORASSIGN: "^=" >
| < REMASSIGN: "%=" >
| < LSHIFTASSIGN: "<<=" >
| < RSIGNEDSHIFTASSIGN: ">>=" >
| < RUNSIGNEDSHIFTASSIGN: ">>>=" >
}

/***
* THE ALGORITHM LANGUAGE GRAMMAR STARTS HERE *
***/
/* Program structuring syntax follows. */
ASTCompilationUnit CompilationUnit()
#CompilationUnit :
{}
{
 {
 jjtThis.setFirstToken(getToken(1));
 }
 (ImportDeclaration())*
 (BodyDeclaration())*
 <EOF>
 {
 return jjtThis;
 }
}

void ImportDeclaration() :
{}
{
 "import" Name() ["." "*"] ";"
}

/* Declaration syntax follows. */
void BodyDeclaration() :
{}
{
 LOOKAHEAD(MethodDeclarationLookahead())
 MethodDeclaration()
|
 FieldDeclaration()
}

//This production is to determine lookahead
//only.
void MethodDeclarationLookahead() :
{}
{
 ("public" | "protected" | "private" |
"static" | "abstract" | "final" | "native" |
"synchronized")*
 ResultType() <IDENTIFIER> "("
}

void FieldDeclaration() :
{ }
{
 ("public" | "protected" | "private" |
"static" | "final" | "transient" | "volatile"
)*
 (ShowVariableDeclaration()

 23

 | Type() VariableDeclarator() (","
VariableDeclarator())*) ";"
}

void ShowVariableDeclaration() :
{ Token t;
}
{ { t = getToken(1); }
 (("MyArray" <IDENTIFIER> "=" "new"
"MyArray" Arguments()
 | "MyStack" <IDENTIFIER> "=" "new"
"MyStack" Arguments()
 | "MyQueue" <IDENTIFIER> "=" "new"
"MyQueue" Arguments()
 | "MyHeap" <IDENTIFIER> "=" "new" "MyHeap"
Arguments()
 | "MyPQHeap" <IDENTIFIER> "=" "new"
"MyPQHeap" Arguments()
 | "MyGraph" <IDENTIFIER> "=" "new"
"MyGraph" Arguments()
 | "MyTreeNode" <IDENTIFIER> "=" "new"
"MyTreeNode" Arguments()
 | "DrawableString" <IDENTIFIER> "=" "new"
"DrawableString" Arguments())
 { jjtThis.setFirstToken(t);

 jjtThis.setLastToken(getToken(0));
 }
)#ShowBlock
}

void Comma() :
{
 Token t;
}
{
 ";"
 ({
 t = getToken(1);
 jjtThis.setFirstToken(t);
 jjtThis.setLastToken(getToken(0));
 }
) #SpecialBlock

}

void VariableDeclarator() :
{}
{
 VariableDeclaratorId() ["="
VariableInitializer()]
}

void VariableDeclaratorId() :
{}
{
 <IDENTIFIER> ("[" "]")*
}

void VariableInitializer() :
{}
{
 ArrayInitializer()
|
 Expression()
}

void ArrayInitializer() :
{}

{
 "{" [VariableInitializer() (LOOKAHEAD(2)
"," VariableInitializer())*] [","] "}"
}

void MethodDeclaration() :
{}
{
 ("public" | "protected" | "private" |
"static" | "abstract" | "final" | "native" |
"synchronized")*
 ResultType() MethodDeclarator() ["throws"
NameList()]
 (Block() | ";")
}

void MethodDeclarator() :
{}
{
 <IDENTIFIER> FormalParameters() ("[" "]")*
}

void FormalParameters() :
{}
{
 "(" [FormalParameter() (","
FormalParameter())*] ")"
}

void FormalParameter() :
{}
{
 ["final"] Type() VariableDeclaratorId()
}

void Initializer() :
{}
{
 ["static"] Block()
}

/* Type, name and expression syntax follows.*/
void Type() :
{}
{
 (PrimitiveType() | Name() | "MyArray"
|"MyQueue" |"MyStack" |"MyHeap"|"MyPQHeap"
|"MyGraph"|"MyTreeNode"|"DrawableString") (
"[" "]")*
}

void PrimitiveType() :
{}
{
 "boolean"
| "char"
| "byte"
| "short"
| "int"
| "long"
| "float"
| "double"
}

void ResultType() :
{}
{
 "void"

 24

| Type()
}

void Name() :
/* A lookahead of 2 is required below since
"Name" can be followed
 * by a ".*" when used in the context of an
"ImportDeclaration".
 */
{}
{
 <IDENTIFIER>
 (LOOKAHEAD(2) "." <IDENTIFIER>)*
}

void NameList() :
{}
{
 Name()
 ("," Name())*
}

/* Expression syntax follows. */
void Expression() :
{}
{
 LOOKAHEAD(PrimaryExpression()
AssignmentOperator())
 Assignment()
|
 ConditionalExpression()
}

void Assignment() :
{}
{
 PrimaryExpression() AssignmentOperator()
Expression()
}

void AssignmentOperator() :
{}
{
 "=" | "*=" | "/=" | "%=" | "+=" | "-=" |
"<<=" | ">>=" | ">>>=" | "&=" | "^=" | "|="
}

void ConditionalExpression() :
{}
{
 ConditionalOrExpression() ["?" Expression()
":" ConditionalExpression()]
}

void ConditionalOrExpression() :
{}
{
 ConditionalAndExpression() ("||"
 ConditionalAndExpression())*
}

void ConditionalAndExpression() :
{}
{
 InclusiveOrExpression() ("&&"
 InclusiveOrExpression())*
}

void InclusiveOrExpression() :
{}
{
 ExclusiveOrExpression() ("|"
ExclusiveOrExpression())*
}

void ExclusiveOrExpression() :
{}
{
 AndExpression() ("^" AndExpression())*
}

void AndExpression() :
{}
{
 EqualityExpression() ("&"
EqualityExpression())*
}

void EqualityExpression() :
{}
{
 InstanceOfExpression() (("==" | "!=")
InstanceOfExpression())*
}

void InstanceOfExpression() :
{}
{
 RelationalExpression() ["instanceof" Type()
]
}

void RelationalExpression() :
{}
{
 ShiftExpression() (("<" | ">" | "<=" |
">=") ShiftExpression())*
}

void ShiftExpression() :
{}
{
 AdditiveExpression() (("<<" | ">>" | ">>>"
) AdditiveExpression())*
}

void AdditiveExpression() :
{}
{
 MultiplicativeExpression() (("+" | "-")
MultiplicativeExpression())*
}

void MultiplicativeExpression() :
{}
{
 UnaryExpression() (("*" | "/" | "%")
UnaryExpression())*
}

void UnaryExpression() :
{}
{
 ("+" | "-") UnaryExpression()
| PreIncrementExpression()
| PreDecrementExpression()
| UnaryExpressionNotPlusMinus()

 25

}

void PreIncrementExpression() :
{}
{
 "++" PrimaryExpression()
}

void PreDecrementExpression() :
{}
{
 "--" PrimaryExpression()
}

void UnaryExpressionNotPlusMinus() :
{}
{
 ("~" | "!") UnaryExpression()
| LOOKAHEAD(CastLookahead())
 CastExpression()
| PostfixExpression()
}

// This production is to determine lookahead
//only. The LOOKAHEAD specifications
// below are not used, but they are there just
//to indicate that we know about
// this.
void CastLookahead() :
{}
{
 LOOKAHEAD(2)
 "(" PrimitiveType()
| LOOKAHEAD("(" Name() "[")
 "(" Name() "[" "]"
| "(" Name() ")" ("~" | "!" | "(" |
<IDENTIFIER> | "this" | "super" | "new" |
Literal())
}

void PostfixExpression() :
{}
{
 PrimaryExpression() ["++" | "--"]
}

void CastExpression() :
{}
{
 LOOKAHEAD("(" PrimitiveType())
 "(" Type() ")" UnaryExpression()
| LOOKAHEAD("(" Name())
 "(" Type() ")" UnaryExpressionNotPlusMinus()
}

void PrimaryExpression() :
{}
{
 PrimaryPrefix() (LOOKAHEAD(2)
PrimarySuffix())*
}

void PrimaryPrefix() :
{}
{
 Literal()
| Name()
| "this"
| "super" "." <IDENTIFIER>

| "(" Expression() ")"
| AllocationExpression()
}

void PrimarySuffix() :
{}
{
 LOOKAHEAD(2)
 "." "this"
| LOOKAHEAD(2)
 "." "class"
| LOOKAHEAD(2)
 "." AllocationExpression()
| "[" Expression() "]"
| "." <IDENTIFIER>
| Arguments()
}

void Literal() :
{}
{
 <INTEGER_LITERAL>
| <FLOATING_POINT_LITERAL>
| <CHARACTER_LITERAL>
| <STRING_LITERAL>
| BooleanLiteral()
| NullLiteral()
}

void BooleanLiteral() :
{}
{
 "true" | "false"
}

void NullLiteral() :
{}
{
 "null"
}

void Arguments() :
{}
{
 "(" [ArgumentList()] ")"
}

void ArgumentList() :
{}
{
 Expression() ("," Expression())*
}

void AllocationExpression() :
{}
{
 LOOKAHEAD(2)
/* SpecialAllocation()
| LOOKAHEAD(2) */
 "new" PrimitiveType() ArrayDimensions() [
ArrayInitializer()]
| "new" Name()
 (
 ArrayDimensions() [ArrayInitializer()]
 | Arguments()
)
}

 26

/* The second LOOKAHEAD specification below is
to parse to PrimarySuffix
 * if there is an expression between the
"[...]".
 */
void ArrayDimensions() :
{}
{
 (LOOKAHEAD(2) "[" Expression() "]")+ (
LOOKAHEAD(2) "[" "]")*
}

/* Statement syntax follows. */
void Statement() :
{}
{
 LOOKAHEAD(2)
 LabeledStatement()
| Block()
| EmptyStatement()
| StatementExpression() Comma()
| SwitchStatement()
| IfStatement()
| WhileStatement()
| DoStatement()
| ForStatement()
| BreakStatement()
| ContinueStatement()
| ReturnStatement()
| ThrowStatement()
| SynchronizedStatement()
| TryStatement()
}

void LabeledStatement() :
{}
{
 <IDENTIFIER> ":" Statement()
}

void Block() :
{}
{
 "{" (BlockStatement())* "}"
}

void BlockStatement() :
{}
{
 LOOKAHEAD(["final"] (Type() <IDENTIFIER>)
| "MyArray"|"MyStack"|"MyQueue"|"MyHeap")
 LocalVariableDeclaration() ";"
| Statement()

}

void LocalVariableDeclaration() :
{}
{ ShowVariableDeclaration()
 | ["final"] Type() VariableDeclarator() (
"," VariableDeclarator())*
}

void EmptyStatement() :
{}
{
 ";"
}

void StatementExpression() :
/* The last expansion of this production
accepts more than the legal
 * Java expansions for StatementExpression.
 */
{}
{
 PreIncrementExpression()
| PreDecrementExpression()
| LOOKAHEAD(PrimaryExpression()
AssignmentOperator())
 Assignment()
| PostfixExpression()
}

void SwitchStatement() :
{}
{
 "switch" "(" Expression() ")" "{"
 (SwitchLabel() (BlockStatement())*)*
 "}"
}

void SwitchLabel() :
{}
{
 "case" Expression() ":"
| "default" ":"
}

void IfStatement() :
/*
 * The disambiguating algorithm of JavaCC
automatically binds dangling
 * else's to the innermost if statement. The
LOOKAHEAD specification
 * is to tell JavaCC that we know what we are
doing.
 */
{}
{
 "if" "(" Expression() ")" Statement() [
LOOKAHEAD(1) "else" Statement()]
}

void WhileStatement() :
{}
{
 "while" "(" Expression() ")" Statement()
}

void DoStatement() :
{}
{
 "do" Statement() "while" "(" Expression()
")" Comma()
}

void ForStatement() :
{}
{
 "for" "(" [ForInit()] ";" [Expression()]
";" [ForUpdate()] ")" Statement()
}

void ForInit() :
{}
{
 LOOKAHEAD(["final"] Type() <IDENTIFIER>)

 27

 LocalVariableDeclaration()
| StatementExpressionList()
}

void StatementExpressionList() :
{}
{
 StatementExpression() (","
StatementExpression())*
}

void ForUpdate() :
{}
{
 StatementExpressionList()
}

void BreakStatement() :
{}
{
 "break" [<IDENTIFIER>] ";"
}

void ContinueStatement() :
{}
{
 "continue" [<IDENTIFIER>] Comma()
}

void ReturnStatement() :
{}
{
 "return" [Expression()] ";"
}

void ThrowStatement() :
{}
{
 "throw" Expression() ";"
}

void SynchronizedStatement() :
{}
{
 "synchronized" "(" Expression() ")" Block()
}

void TryStatement() :
/* Semantic check required here to make sure
that at least one
 * finally/catch is present.
 */
{}
{
 "try" Block()
 ("catch" "(" FormalParameter() ")" Block()
)*
 ["finally" Block()]
}

