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Abstract 
We address the problem of observing a moving 

agent. We advocate a modeling approach for the vi- 
sual system and its observer, where a discrete event 
dynamic system (DEDS) frame work is developed and 
“events” are defined as ranges on parameter subsets. 
In particular, we propose a system for observing a 
manipulation process, where a robot liaiid manipu- 
lates an object. We recognize the liand/object in- 
teraction over time and a st.abilizing observer is coii- 
structed. Low-level modules are developed for recog- 
nizin the events tliat causes s1.at.e transitions wit Iiin 
the cfynamic manipulation system. The work esam- 
ines closely the possibilit irs for errors. mistakes and 
uncertainties in the manipulation system, observer 
construction process and rveiit ideiit ificatioii iiiecli- 
anlsms. The system utilizes different tracking tecli- 
niques in order to observe and  recognize the t,ask i i i  
an acirue, adapiive and gonl -d i r rctcd nianner. 

1 Introduction 
We discuss a new franiework and representation for 
the general roblem of observation. The system being 
studied can [e considered as a “hybrid” one, due t.0 tlie 
fact that we need to report 011 dtstritct aiid discrete vi- 
sual states that occur in the conittiuons. nsynchronous 
and three-dimensional world. froni two-diniensioiial 
observations that are sampled periodically. I n  other 
word, the system being observed and reported on coii- 
sists of a nuniber of contiiiuous. discrete and symholic 
parameters that vary over time i i i  a iiiaiiiier t.liat niiglit 
not be “smooth” eiiougli for t lie observer. due to visual 
obscurities and other percept.ual uncertainties. 
The problem of observing a moving agent wa3 ad- 
dressed in the literature estensively. It \vas discussed 
in the work addressing tracking of targets and. deter- 
mination of tlie optic flow [2,7.10,17]. recovering 3-D 
parameters of differelit kinds of surfaces [6,12,15,1(i]. 
and also in the contest of other problems [1,3.8.9]. 
However, the need to rrcognt:e, undtrstattd and E -  
pori on different visual steps w i t h i n  a dynamic task 
w a s  not sufficiently addressed. I n  particular. tliere is 
a need for high-level symbolic interpretations of the 
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actions of an agent that attaches meaning to the 3 -  
D world events, as opposed to simple recovery of 3-D 
parameters and the consequent tracking movements to 
compensate their variation over time. 

In this work we establisli a framework for the geii- 
eral robleni of observation, recognition aiitl u n d w -  
stanfing of dynamic visual syst.erns, which may be 
applied to different kinds of visual tasks. M b  coii- 
centrate on the problem of observin a nianipulation 

eehind our framework. We use a discret.e event dy- 
namic s stem as a high-level structuring technique to 
model t i e  visual manipulation system. Our foniiula- 
tion uses the knowledge about. tlie syst,eni and tlie clif- 
ferent actions in order to solve the observer problem 
in an efficient, stable and practical way. Tlie model 
incorporates different liand/object relationships aiid 
the possible errors in tlie inani )ulatiou actions. I t  
also uses different tracking mechaiiisnis so that the 
observer can keep track of the workspace of the ma- 
nipulating robot. A framework is developed for tlie 
hand/object interaction over time and a stabilizing 
observer is constructed. Low-level modules are devel- 
oped for recognizing the “events” that causes state 
transit ions with i 11 tlie dynamic iiian i p u lat. ion system. 
Tlie process uses a coarse quant.ization of the manip- 
ulation actions in order to attain an active. adaptive 
and goal-directed sensing mecliaiiisiii. 

rocess in order to illustrate tlie i s em and motive 

The work examines closely the possibilities for errors. 
mistakes and uncertainties in  tlie visual  manipulatioii 
system, observer construction process and event iden- 
tificatioii mechanisms, leading LO a DEDS formula- 
tion wi th  uncertainties, in which st.ate transitions and  
event identification is asserted accordiiig to a coiii- 
puted set of 3-D uocertainty iiiodrls. 

\Ire describe the automaton niodel of a discrete event 
dynamic system in tlie nest section and then proceed 
to formulate our framework for the nianipolntion pro- 
cess and the observer construction. Then we develop 
efficient low-level event-identificat ion mcclianisms for 
determinin different manipulation niovenients i n  the 
system a n t  for iiioving tlie observer. Nest, the un- 
certainty levels are described i n  det.ails. Some results 
from testing the system is ellclosecl and futiire esteil- 
sioiis to tlie system are discussed. 
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2 Discrete Event Dynamic Sys- 
tems 

Discrete event dynamic s>stenis (DEDS) are dFiiamic 
systems (typically asynchronous) io which st ate tran- 
sitions are triggered by the occurrence of discrete 
events in the system. DEDS are usually modeled by 
finite state automata with partially observable events 
together with a mechanism for enablin and disabling 
a subset of state transitions 11,13,14 . We propose 

sion and robotics tasks, i n  particular, we use the model 
as a high-level structuring technique for our systeni 1.0 
observe a robot hand niani ulatiiig an object. We can 
represent a DEDS by the &llowiiig quadruple : 

that this model is a suitable r t  rainewor . for inany vi- 

G = (s .s ,u . r )  
where A' is the finit.e set of states. Y is the fi1iit.e set 
of possible events, I :  is the set of admissible control 
inputs consisting of a specified collection of subsets of 
C, corresponding t.0 the choices of sets of controllable 
events that can be enabled and r E I: is the set of 
observable events. 
We can visualize the concept of DEDS by an esainple 
as in Figure 1, t,lie graphical represenhtioii is quite 
similar to a classical fiiiite automaton. Here, circles 
denote states, and events are represent.ed by arcs. The 
first symbol in each arc label deiiot.es the evcnt , \vliile 
the symbol following "/*' denotes the corresponding 
output (if the event. is observable). Finally, we mark  
the controllable evei1t.s by *':U" 

1"" &p+J 6:u 16 

P 
Figure 1 : A Simple DI<DS E s a m p l ( ~  

Thus, in this example, S = (0. 1.2. :I), S = { c l .  3* 6) ~ 

r = {ala), and 6 is controllahle at stat.e 3 but not at 
state 1. 
Stabilit can be defined wit.Ii respect to t.lie stoles  of 
a DEDS automaton. Assuminw that we have identi- 
fied the set of "good" states, E, t h t  we would like 
our DEDS to "stay witliin" or do not stay outside for 
an infinite time, t.lien stal)ilizability cait he fortinally 
defined as follows : 

Given. a live system -4 a i d  sotiie E c .YT 2 E S is 
Stabilizable with respect. to E ( or E-st.abilizahle ) i f  
there exists a state feedback I\' s u c h  that t' is alive and 

€-stable in - 4 ~ .  A set of states, Q, is a stabilizahle set 
if there exists a feedback law K ( s )  (a control pattern) 
so that every z E Q is alive and stable in Ah',  and .1 
is a stabilizable system if S is a stabilizable set. 

A DEDS is termed obse~vn l fe  if we caii use tlie obseI- 
vation sequence to determine the current state esactly 
a t  intermittent points in t.iiiie separated by a louirrfcd 
number of events. More formally, taking any Sufi- 
ciently long string, s, that  can be generated fro111 any 
initial state t. For any observable system, we can then 
find a prefix p of s such that p takes t t o  a un ique  state 
y and the length of the remaining suffis is bounded by 
some integer no. Also, for any other string L, from 
some initial state t', such that t has th; same output 
string as p ,  we require that t takes x to the saiiie, 
unique state y. 

The basic idea behind st.rong output, stabilizabilitj. is 
that we will know that the systeiii is i n  state E ilf 
tlie &server: state is a Subset of E. The cornpensat.or 
should then /orcc the observer to a stat.r correspontliiig 
to a subset of E a t  iiitervals of at iiiost a fiiiite integer 
i observable transitions. If Z is the set of states of tlic 
observer, t.lien : 

-4 is strongly output. E-stabilizable if there esists a 
state feedback I\' for the observer U su.ch that 01; is 
stable with respect to €0 = { i E Z I z C E } .  

3 Modeling and Observer Con- 
struct ion 

hIanipulation actions can he inotleletl vflirieutly \v i [  I i i n  
a discrete eveiit dynamic systwi liaiii(work.\\.t, I I V '  

t,lie DEDS niodel as a liigli level structuring tecliiiiqw 
to preserve and niake use of the information we know 
aboul the way in  whicli each nianipulat ion task slioiiltl 
be performed. 

I 
I 
I 1 - 1  I I I I  I 

. -  
- I  

I I I 

Figure 2 : A hlodel for a C;raspitig Task 
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3.1 Building the Model 3.3 Identifying Motion Events 

We present a simple model for a rasping task .  The 
model is that of a gripper approacftin an object ahd 
grasping it. As shown in Figure 2, t i e  model repre- 
sents a view of the hand at state 1, with no object in 
sight at state 2, the object starts to appear, at state 3, 
the object is in the claws of the gri per and at state 4, 
the claws of the gripper close on tRe object. Different 
orientations for the approaching hand are allowable 
and observable. State changes occur only when the 
object ear in si ht or when the hand encloses it. 
It rhou8Ee  noted %at these states can be considered 
aa the set of "~ood"  states E, since these states are 
the expected different visual configurations of a hand 
and object within a grasping task. States 5 and 6 re - 
resent instability in the system as they describe t i e  
situation where the hand IS not centered with res ect 
to the camera imaging plane. The events are delned 
aa motion vectors or motion vector probability distri- 
butions, as will be described later, that causes state 
transitions and as the appearance of the object into 
the viewed scene. The controllable events are denoted 
by ": t ' .  

3.2 Developing the Observer 

In order to know the current state of the manipulation 
process we need to observe the sequence of events oc- 
curring in the system and make decisions regarding the 
state of the automaton, state ambiguities are allowed 
to occur, however, they are required to be resolvable 
after a bounded interval of events. The  goal will be 
to make the system a strongly output stabilizable one 
and/or construct an observer to satisfy specific task- 
oriented visual requirements. As an example, for the 
model of the grasping task, an observer can he formed 
for the system as shown in Figure 3. It can 'be easily 
seen that the system can be made stable with respect 
to the set EO. 

Figure 3 : Observer for the Grasping System 

We use the image motion to estimate the hand move- 
ment. This task  can be accomplished by either feature 
tracking or by cornputin4 the full optic flow. The im- 
age flow detection technique we use is based on the 
sum-of-squared-differences optic flow. The sensor ac- 
quisition procedure (grabbing ima es) and uncertainty 

tures are factors that should be taken into consider- 
ation when we compute tlie uncertainty in the optic 
flow. 

in image processing mechanisms k or determining fea- 

One can model an arbitrary 3-D inotioii in terms of 
stationary-scene/moving-viewer as shown in Figure 4. 
The optical flow at the image plane can be related 
to the 3-D world translational and rotational veloci- 
ties and structure as indicated by the following pair of 
equations for each point ( E ,  y) in tlie image plane [12] 

tJy = { VZ - $} + [(1+ y') QA. - xyRy - rRz] 

where U= and uy are the image velocity a t  image 10- 
cation ( t , y ) ,  (Vx,Vj?,Vz) and (Rx,Ry,Rz) are the 
translational and rotational velocity vectors of the ob- 
server, and Z is the unknown dist.ance from the cam- 
era to the object. In this system of equations, the only 
knowns are the 2-D vectors tJr and uy, if we use the 
formulation with uncertainty then basically the 2-D 
vectors are random variables with a known probabil- 
ity distribution. A number of techniques can be used 
to linearize the system of equations and to solve for the 
motion and structure parameters as random variahlrs 
[4,5,15]. 

Figure 4 : 3-D \:iewer Formulation 
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4 Modeling and Recovering 3- 
D Uncertainties 

The uncertainty in the recovered image flow values re- 
sults from sensor uncertainties and noise and from the 
image processing techniques used to  estract and track 
features. We use a static camera calibration technique 
to model the uncertainty in 3-D to 2-D feature loca- 
tions. The strategy used to find the 2-D uncertainty in 
the features 2-D representation is to utilize the recov- 
ered camera parameters and the 3-D world coordinates 
(tu,, gw, zW) of a known set of points and compute the 
correspondin pixel coordinates, for oints distributed 
throughout t f e  image plane a numger of times, find 
the actual feature pixel coordinates and construct 2-D 
histo ams for the displacements from the recovered 
coorKates  for the experiments performed. Tlie num- 
ber of the experiments givin a certain displacement 
error would be the t =is of &is histogram, while the 
t and y axis are the displacement error. The three 
dimensional histogram functions are then normalized 
such that the volume under the histogram is equal t.0 
1 unit volume and the resulting normalized function 
is used as the distribution of pisel displacement error. 

The spatial uncertainty in the ima e processing tech- 
nique can be modeled by using syntfesized images ancl 
corrupting them, then applyin the feature est.ract ion 
mechanism to  both images a n i  comput.ing t lie result.- 
ing spatial histogram for the error in finding features. 
The robability density function for the error i n  find- 
ing t i e  flow vectors can thus be computed as a spatial 
convolution of the sensor and strategy uncertainties. 
We then eliminate the unrealistic motion estimates by 
using the physical (geometric and mechanical) limita- 
tions of the manipulating hand. Assuming that fea- 
ture oints lie on a planar surface on the hand. t hen we 
can :evelop bounds on the coefficients of the motion 
equations, which are second degree functions i n  +' and 
y in three dimensions, U, = f l ( z , y )  and rY = - j ? ( ~ . y ) .  

l l i  

Figure 5 : CDF of ti. 
As an example, we write the equation governing the 
maximum ut value in tlie first quadraiit of the J - y 
plane (++, y+).  

> r  
m,,,) + (2 + maJlPI" \ , .P .L ' . \ .  I 

+nz , )  Y +  (9 - IZ,. I ) 
u1,,, = (-e - z.. 

min(wvz, .q , \ z  ) + (ma=(w:,.q#v~, I 

m * n ( p i  Vz,  . P , ~ z ,  ) + y) 2 =y-  ( 120, 
where the subscripts s and I denote lower and up- 
per limits, respectively. The above envelopes are then 
used to reject unrealistic 2-D velocity estimates at dif- 
ferent pixel coordinates in the image. The 2-D uii- 
certainties are then used to  recover tlie 3-D uncer- 
tainties in the motion and structure parameters. The 
system is linearized by either dividing tlie parameter 
space into three subspaces for the traiislational, ro- 
tational and striicture parameters and solving itera- 
tively or using other linearization techniques and/or 
assum tions to solve a linear system of random vari- 
ables p4,5,6,15,16,18]. A s  an example, the recovered 
3-D translational velocit cumulative density func- 
tion in the 2 direction tor an actual world motion 
Vz = 13 cm, is shown in Figure 5. 

5 Conclusions 
State transitions are asserted within the DEDS ob- 
server model according to t.he probability value of 
the occurrence of an event. Events are thus defined 
BS ranges for tlie different parameters. The problem 
then reduces to computing die corresponding areas 
under the refined distribution curves. An obvious \ray 
of usin t.hose probability values is to establish some 
thresli8d values and assert transitions according to 
those thresholds. It might be the case that none of 
tlie obtained probability values exceeds the set thresh- 
old value and/or all values are very low. In that case. 
there is a good chance that we are a t  either the wrong 
automata state. The remedy to such probleiils can be 
iinpleinented through time proximity, that is. wait for 
a while (which is to  be preset) till a strong probability 
value is registered and/or backtrack in the automaton 
niodel for the observer till a high enough probability 
value is asserted. afail state is reached or the initial 
ambiguity is assert,ed. The backtracking strategy can 
be inipleinented using a stack-like st.ruct urr associated 
with each state that has already been traversed, wli idl  
includes a sorted list. of the computed event prohahil- 
ities and a father-state variable. 

\7'e described a syst.em for observing a manipulation 
process. Tlie proposed approacli can Be generalized 
for other hybrid systems involving different kinds of 
quantization requirements for dynamic systems, for 
sets of discrete, continuous and symbolic parameters. 
The use of discrete event dyiiainic systems with uncer- 
tainty modeling for the event, description enables the 
observer to recognize tasks robustly. The proposed 
system also utilizes the a-priori knowledge about t.he 
task domain in order to achieve efficiency and prac- 
tica1it.y. The high level formulation allows for recog- 
nizing and reporting on t.lic visual system st.ate as R 
symbolic description of the observed tasks. 
Experiments were performed to observe the robot 
hand. The low level visual feature acquisition is per- 
formed on the Datacube MasVideo pipeliiied video 
)rocessor at frame rate. The observer and manipu- I ating robots are both P U M A  560's aiid the Lord ex- 
perimental gripper is used as the manipulating hand. 
A grasping task using tlie Lord gripper. as seen by 



the observer, is shown in Figure G. Thus, we have 
proposed a new approach to  solving the problem of 
observing a moving agent. Our approach uses the for- 
mulation of discrete event dynamic systems as a high- 
level model for the framework of evolution of the vi- 
sual relationship over time. The proposed formulation 
can be extended to accommodate for mote manipula- 
tion processes. Increasing the number of states and 
expanding the events set would allow for a variety of 
manipulating actions. 

Hand and Objects in Scene; Probability = 0.957878 

Hand eiiclosilrg an Object; Probability = 0.98251i 

Hand is lifting an Object: Probability = 0.918423 

Figure G : A Grasping Task 
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