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Chapter  3

NOMENCLATURE

D: 	 Dexterity index of the manipulator at a 
point.

DMean: 	 Mean dexterity index over a region or 
trajectory.

N: 	 Number of points along the trajectory.
dx,dy,dz: 	 Dexterity indices about the X, Y and Z 

axis.
α, β, γ:	 Yaw, pitch and roll angels of the end-

effector.
a,b,c,d: 	 Link lengths of the four-bar kinematic 

chain.
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Tarek Sobh
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Optimal Design of Three-
Link Planar Manipulators 
Using Grashof’s Criterion

ABSTRACT

The design of robotic manipulators is dictated by a set of pre-determined task descriptions and perfor-
mance parameters. These performance parameters are often defined in terms of workspace dexterity, 
manipulability, and accuracy. Many serial manipulator applications require that the manipulator have 
full dexterity about a work piece or a pre-defined trajectory, that is, to approach the given point within 
the workspace with all possible orientations about that point. Grashof’s criterion defines the mobility 
of four-link closed chain mechanisms in relation to its link lengths. A simple assumption can convert 
a three-link serial manipulator into a four-link closed chain so that its mobility can be studied using 
Grashof’s criterion. With the help of Grashof’s criterion, it is possible not only to predict and simulate 
the mobility of a manipulator during its design, but also to map and identify the fully-dexterous regions 
within its workspace. Mapping of the dexterous workspace is helpful in efficient task placement and path 
planning. Next, the authors propose a simple algorithm using Grashof’s criterion for determining the 
optimal link lengths of a three-link manipulator, in order to achieve full dexterity at the desired regions 
of the workspace. Finally, the authors test the generated design by applying joint angle limitations.

DOI: 10.4018/978-1-4666-0176-5.ch003
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l1,l2,l3: 	 Link lengths of the three-link planar 
manipulator.

θ1, θ2, θ3: 	Joint angles of the three-link planar 
manipulator.

d: 	 Distance between a task-point and base 
of the manipulator

dmin: 	 Minimum distance between a task-point 
and base of the manipulator.

dmax: 	 Maximum distance between a task-point 
and base of the manipulator.

1. INTRODUCTION

The problem of designing an optimal manipulator 
configuration is very complex, as the equations 
governing the motion of the end-effector in the 
workspace are both non-linear and complex, often 
having no closed solutions. Prototyping methods 
such as kinematic synthesis and numerical optimi-
zation are complex and very time consuming. The 
inherent complexity of kinematic synthesis has 
helped to make a strong case for rapid prototyp-
ing methods in which manipulators are designed 
with very specific performance requirements 
or tasks point specifications. Rapid prototyping 
allows designers to spend more time on design, 
simulation and evaluation of different manipulator 
configurations instead of solving mathematical 
models describing kinematics chains.

The study of mobility of closed chain mecha-
nisms has interested researchers for a very long 
time. Understanding the mobility of chain mecha-
nisms in relation to their link lengths can help us to 
design better and highly dexterous manipulators. 
In 1833, Grashof first introduced a simple rule to 
understand the mobility of four-link mechanisms 
[6]. This rule, commonly known as the Grashof’s 
theorem, helps analyze the rotatability of links in 
a closed four-bar mechanism. This was further 
extended by Paul (1979), who introduced an in-
equality into the Grashof’s theorem and proved 
that Grashof’s criterion is both a necessary and 

sufficient condition for the existence of a crank in 
the four-bar mechanism (Chang, Lin, & Wu, 2005).

Researchers have applied Grashof’s criterion 
to understand and study the workspace mobility 
of both closed and open chain planar mechanisms. 
Barker (1985), using Grasshof’s criterion, classi-
fied four-bar planar mechanisms based on their 
mobility. Grashof’s criterion was applied to the 
study of three-link planar mechanism by Li and 
Dai (2009). Furthermore, they developed equa-
tions for the orientation angle and presented a 
simple program to analyze the orientation angle 
for a manipulator, given the link parameters. The 
mobility and orientation of open chain mechanisms 
can also be analyzed using Grashof’s criterion. 
Dai and Shah (2002, 2003) studied the mobility 
of serial manipulators by introducing a virtual 
ground link between the end-effector and the base 
so as to form a virtual closed chain. In (Li, & Dai, 
2009; Dai, & Shah, 2003), the authors proposed 
workspace decomposition based on the orientation 
capability of the manipulator.

Grashof’s Theorem has been extended to 
include more than four-bar chain mechanisms. 
Grashof’s criterion for five bar chain was proposed 
by Ting (1986). Ting and Liu (1991) extended 
this work to evaluate the mobility of N-bar chain 
mechanisms. Nokleby and Podhorodeski (2001) 
applied Grashof’s criterion for the optimized 
synthesis for five-bar mechanisms.

In this work we present a simple algorithm 
for the optimal design of a three-link planar ma-
nipulator, using Grashof’s criterion. We begin 
by adding a virtual link to the three-link planar 
manipulator in order to make it a closed four-bar 
chain mechanism, so that Grashof’s criterion can 
be applied. We evaluate the generated manipulator 
designs using dexterity index as a performance 
measure. Our proposed optimization algorithm 
generates the required link lengths such that the 
manipulator has maximum dexterity in the region 
specified by the user. This region of interest can 
either be a set of task points or a trajectory. Fur-
thermore, we have also demonstrated, with the 
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help of simulations, the influence of the serial 
chain link ordering on the dexterous workspace. 
Finally, we simulate our design under practical 
conditions such as joint angle limitations.

2. DEXTERITY INDEX AS A 
PERFORMANCE MEASURE

The performance evaluation of a robotic ma-
nipulator in its workspace is central to the design 
process of the manipulator. Both a bottom-up ap-
proach – designing a manipulator to meet a certain 
performance standards (Gosselin, 1992; Sobh, & 
Toundykov, 2004; Paden, & Sastry, 1988) and a 
top-down approach – optimal task placement in 
workspace of the manipulator (Santos, Steffen, & 
Saramago, 2010), have been thoroughly investi-
gated. In either case, it is essential to define proper 
performance parameters and study the variation 
of these parameters in the workspace.

In this process, numerous parameters have been 
proposed to quantify and measure the performance 
of the manipulator in its workspace, such as dexter-
ity index, manipulability index, condition number, 
minimum singular value, etc. (Tanev, & Stoyanov, 
2000). Two parameters stand out in quantifying 
the manipulator’s performance in its workspace: 
dexterity and manipulability. A manipulator has 
to be highly dexterous or manipulable in its 
workspace to meet high performance standards. 
Many applications of robotic manipulators require 
the manipulator to be fully dexterous to perform 
specified tasks.

The dexterity of a manipulator is defined as the 
number of ways in which any given point in the 
workspace can be approached by the end-effector. 
The dexterity index of a manipulator at a point 
in the workspace can be defined as a measure of 
a manipulator to achieve varying orientations at 
that point (Tanev, & Stoyanov, 2000).

In their work, Kumar and Waldron (1981) 
introduced the parameter dexterity index as 
another measure for manipulator performance. 

They defined dexterous workspace as ‘the volume 
within which every point can be reached by the 
manipulator end-effector with any desired orien-
tation’ (Tanev, & Stoyanov, 2000, p. 1). While 
the manipulability index is a function of both 
the manipulator configuration and joint angles 
(the manipulability index can be different at the 
same point if the manipulator has multiple inverse 
kinematic solutions), the dexterity index is only a 
function of the manipulator configuration.

The orientation at any given point in the 
workspace can be represented in terms of the 
yaw (α), pitch (β) and roll (γ) angles (Spong, & 
Vidyasagar, 1989) as:

R R R R
xyz x y z
=

, , ,γ β α
	 (1)

All three of the angles have a range 0 - 2π to 
provide all possible orientations. The dexterity 
index can be defined as the summation of the 
dexterity indices about each of the axes (Tanev, 
& Stoyanov, 2000) given by Equation (2):

D d d d
x y z

= + +
1
3
( ) 	 (2)

D =
∆
+
∆
+
∆1

3 2 2 2
( )
γ
π

β
π

α
π

	 (3)

where dx, dy, and dz are X, Y and Z dexterity indi-
ces. Δα, Δβ and Δγ are the range of possible yaw, 
pitch and roll angles about a point.

As seen in Equation (3), the dexterity index can 
vary between a minimum of 0 to a maximum of 
1, hence is a well bounded parameter. Therefore, 
points in the workspace with multiple inverse kine-
matic solutions will have a higher dexterity index 
when compared to points with unique solutions.

The mean dexterity index of a manipulator 
for a region of the workspace or trajectory can be 
defined as (Tanev, & Stoyanov, 2000):
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DMean
D

N
= ∑ 	 (4)

The manipulator is said to be completely 
dexterous at a given point if the dexterity at that 
point is equal to unity. Similarly, an area or point 
in the workspace can be said to be completely 
X-dexterous or Y-dexterous if dx or dy is equal to 
unity. In the case of a planar manipulator operat-
ing in the XY – plane

dx = dy =0 	 (5)

A simple algorithm for calculating the dexterity 
index of a workspace was proposed in (Tanev, & 
Stoyanov, 2000).

3. GRASHOF’S CRITERION

The study of mobility of a closed chain mechanism 
has interested researchers for a very long time. 
In 1833, Grashof first introduced a simple rule to 
understand the mobility of four-link mechanisms 
(Kumar, & Waldron, 1981). This rule, commonly 
known as Grashof’s theorem, helps judge the rotat-
ability of links in a four bar mechanism. This was 
further extended by Paul (1979), who introduced 
an inequality into Grashof’s theorem and proved 
that Grashof’s criterion is both a necessary and 
sufficient condition for the existence of a crank 
in the four-bar mechanism.

Consider a four-link kinematic chain consisting 
of four links a, b, c, and d, as shown in Figure 1. 
Let a be the longest link and d be the short link 
in the chain, such that a>b≥c>d. According to 
Grashof’s criterion, there exists at least one link 
that can fully revolve with respect to the other 
links if:

a+d≤b+c	 (6)

i.e. the sum of the longest and the shortest link 
should be less than or equal to the sum of the 
other two links. And none of the links are fully 
revolute if:

a+d>b+c	 (7)

Paul (1979) proved that this criterion was both 
a necessary and sufficient condition for the exis-
tence of a fully rotatable link in the chain. Such 
a mechanism is also known as a Grashof linkage 
(Chang, Lin, & Wu, 2005; Li, & Dai, 2009). In 
a Grashof linkage, the shortest link in the chain 
is the always fully revolvable with respect to the 
other links (Li, & Dai, 2009).

The complete classification and behavior of 
four-bar linkages is explained in (Chang, Lin, & 
Wu, 2005; Barker, 1985).

4. DESIGN OPTIMIZATION

It is impossible for a manipulator to be equally 
dexterous or highly dexterous at all points in the 
workspace. Some regions of the workspace have 
high dexterity while other regions can only be at-
tained by a unique set of joint angles. Therefore, 
it is important that the manipulator be designed 
in such a way that it has maximum dexterity in 
its region of operation.

Figure 1. Four-link kinematic chain
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By design optimization we mean adjusting the 
link lengths in such a way that the manipulator has 
maximum dexterity in the region of interest. As 
the dexterity index is a function of the manipula-
tor configuration, by optimizing the link lengths, 
the manipulator’s dexterous workspace can be 
engineered. A three-link planar manipulator is 
a serial link chain with three revolute joints, as 
seen in Figure 2. The forward kinematic equations 
for a three-link planar manipulator are given by 
Equations (8), (9)

x l l l= + + + + +
1 1 2 1 2 3 1 2 3
cos( ) cos( ) cos( )θ θ θ θ θ θ 	

(8)

y l l l= + + + + +
1 1 2 1 2 3 1 2 3
sin( ) sin( ) sin( )θ θ θ θ θ θ 	

(9)

In order to apply Grashof’s criterion, essen-
tially meant for four-bar linkages, to design three-
link planar manipulators, we assume the distance 
between the base of the manipulator and the 
center of the end-effector as the imaginary fourth 
link of the chain. The length of this imaginary 
fourth link is not constant and depends on the 
joint angles, which in turn determine the position 

of the end-effector in the workspace. Hence, the 
links lengths should be selected such that Grashof’s 
criterion is satisfied at all points in the region of 
operation as d varies from dmin to dmax.

Consider a three-link planar manipulator with 
links l1, l2 and l3, as shown in Figure 2. Let d be 
the variable radial distance between the base and 
the end-effector shown in Figure 2. In order to 
optimize the link lengths to achieve maximum 
dexterity in the area of interest or trajectory, we 
propose the following algorithm.

1. 	 Let dmax be the maximum distance from the 
base and dmin minimum distance while fol-
lowing a trajectory such that dmin≤d≤dmax

2. 	 Let l3 be the shortest link in the manipulator 
such that l3 < dmin. The length of l3 is equal to 
the minimum link length practically possible 
this is determined by the other factors such 
as the size of the motors and loading on the 
manipulator.

Next, we calculate l1 and l2 as follows:

l
d l

1
3

2
1=

+








+max 	 (10)

Figure 2. 3-Link planar manipulator
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l
d l

2
3

2
=

+









max 	 (11)

Since dmax and l3 are finite and known l1 and l2 
can easily be determined.

4. 	 The dexterity index plot of the complete 
workspace is generated to check if the ma-
nipulator has maximum dexterity in the area 
of interest.

The link lengths are chosen such that the 
manipulator behaves as a Grashof’s linkage as 
the radial distance from the base to the task point 
varies from dmin to dmax. l1 and l2 are chosen to be 
the larger links in the chain so that the last link 
or the end-effecter l3 is imparted full rotatability 
at all points within this range. The fourth link d 
is an imaginary link whose length depends on the 
position of the task point. Equations (10) and (11) 
give the minimal link lengths required to satisfy 
Grashof’s criterion such that:

At d=dmax we have l1>l2>d>l3 and l1+l3>l2+d
At d=dmin we have l1>l2>d>l3 and l1+l3>l2+d
Section 5.2 discusses a condition with changed 

link order where the second link is the shortest 
link in the chain.

As long as Grashof’s criterion is satisfied, the 
shortest link (end-effector) will be completely 
revolute, as seen in Figures 3 and 4. Figure 3 
shows few of the infinite orientations that the 
manipulator can attain about a given point when 
Grashof’s criterion is satisfied. The manipulator 
will obviously not behave as a Grashof’s linkage 
at all points in the workspace since the fourth link 
in the chain d is not constant. Optimization ensures 
that the manipulator will behave as a Grashof’s 
linkage in the region dmin≤ d ≤dmax, thereby making 
the end-effector completely revolute and hence, 
providing maximum dexterity to manipulator in 
the region.

As the task point keeps moving in the work-
space, the radial distance between the base of the 

manipulator and the task point, the length of 
virtual fourth link ‘d’ keeps changing. Accord-
ingly, depending of the position of the task point 
the shortest link in the chain will be as shown in 
Table 1.

It is important to mention here that Grashof’s 
criterion only sets a condition for one of the links 
in the chain to be fully revolute with respect to 
the other links, but does not comment on the order 
of the links in the chain. Grashof’s criterion helps 
only in deciding the link lengths, however the 
dexterity of the manipulator depends not only on 
the link lengths but also on their relative position-
ing in the kinematic chain.

5. EXAMPLE 1: TRAJECTORY

Let us consider a design problem where we need 
to design an optimal manipulator configuration 
while following a cubic trajectory joining the task 
points A (14, 14), B (12, 8), C (10, -3), D (9,-7), 
and E (8,-8), shown in Figure 5. The manipulator 
follows a cubic trajectory from one task point to 
another, given by Equation (12)

y = −0.2292x3+7.625x2−78.83x+252 	 (12)

Following the steps in the proposed algorithm, 
we have:

1. 	 The minimum and maximum distances from 
the base while following the trajectory are 
10 and 20, such that 10≤d≤20, assuming 
the manipulator will be based at the origin 
O (0,0).

2. 	 We chose l3 = 8 such that l3 < dmin.
3. 	 From Equation (12), (13) we have l1 = 15 

and l2 = 14.

Using the above generated link lengths, we 
calculate the Dexterity Index (D) of the manipu-
lator at all points on its workspace. Assuming 
that the manipulator operates in the XY-plane, 
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the maximum value of the Dexterity index (D) = 
(1/3) and the maximum value of the dz = 1 while 
dx = dy = 0.

Case 1: Ideal Case

We simulate the manipulator to generate the 
dexterity plot in the ideal case. We assume that 

all three joints are completely revolute and the 
joint angles are not limited. The joint angles are 
only limited such that the links do not overlap 
each other, should the angle between the links be 
close to zero.

In this case, the manipulator has a very sym-
metric dexterous workspace spread over the four 
quadrants, as seen in Figure 6. At points in the 

Figure 3. Different orientations of the manipulator about a set task point
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workspace where Grashof’s criterion is satisfied, 
the shortest link in the chain is completely revo-
lute, therefore the end-effector can have infinite 
orientations about the point. As seen in Figures 
4 and 5, the manipulator has maximum Dexterity 
Index (D) = 0.33 or dz =1, when 10≤d≤20, which 
was the design criteria. The variance of dexterity 
index in the workspace can be seen more clearly 
in the sectional view, as seen in Figure 7.

The behavior of the manipulator within its 
dexterous workspace can be better analyzed by 
dividing the plot into four regions, as shown in 
Figure 8:

Region 1: 0≤d≤l3

Within this region, the shortest link in the 
chain is not l3 but d. In this case, when Grashof’s 
criterion is satisfied for a point the link, will be 
fully revolute. However, since is the distance 
between the end-effector and base, and is not a 
physical link, it is fixed and non-revolute. The 
points within this region will have limited inverse 
kinematic solutions and hence, low manipulability.

Region 2: l3<d≤l1+l2−l3

In this region, Grashof’s criterion is satisfied 
for all values of. For all points within this region 
the shortest link in the chain (end-effector) is 
completely revolute for all values of , thereby 

Table 1. Grashof’s criterion with varying d 

Link Lengths Grashof’s Criterion Shortest Link

l1>l2>l3>d l1+d≤l2+l3 d

l1>l2>d > l3 l1+l3≤d+l2 l3

l1>d>l2 > l3 l1+l3≤d+l2 l3

d> l1>l2 > l3 d+l3≤l1+l2 l3

Figure 4. Manipulator demonstrating full dexterity about a given task point
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able to have infinite orientations about the point 
and hence, maximum dexterity.

Region 3: l1+l2−l3 <d ≤l1+l2+l3

Here, the value of d is so large that the sum of 
the largest link (d) and the shortest link (l3) is no 
longer less than the sum of the other two links. 
In this region, the manipulator behaves as a non-
Grashof linkage. As d→l1+l2+l3, the boundaries 
of the workspace, the dexterity decreases because 
there are very few inverse kinematic solutions for 
points close to edges of the workspace.

Region 3: d>l1+l2+l3

This region is beyond the limits of the end-
effector.

Case 2: Ideal Case; Changed Order

As noted earlier, we know that the dexterity of 
the manipulator is also a function of the relative 
positioning of the links. To prove this, in this case 
we change the order of the links by swapping 
the lengths of links l2 and l3; (l2 = 8 and l3 = 14). 
The new link order for this case is l1 = 15; l2 = 8 
and l3 = 14.

Unlike the previous case, the high dexterity 
band is very thin, as seen in Figure 9. This is so 
because, when Grashof’s criterion is met, the 
shortest link in the chain becomes fully revolute, 

Figure 5. Desired manipulator trajectory

Figure 6. 3D plot of the dexterity index in the workspace
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which in this case is the second link (l2) and not 
the last link (l3). The high dexterity band (Region 
2) is given by:

l3<d≤l1+l2−l3	 (13)

which in this case, will be 8<d≤9
Figure 10 gives a comparative view of the dex-

terity plots in Case 1 and Case 2. As seen in Figure 
10, with the positioning of the links changed, the 
boundaries of the workspace remain the same but 
the maximum dexterity region is significantly 
diminished in Case 2. This simulation reinforces 
the fact that the dexterity index of a manipulator 

is also a function of the relative positioning of the 
links and not just the link lengths.

Case 3: Limited Joint Angles

Grashof’s criterion assumes that the joints are 
completely flexible, i.e., able to attain any angle 
between 0 and 2π. However, this is not possible 
in practice. The rotation of joints is often limited 
due to various mechanical and/or workspace 
constraints. In this case, we consider a practical 
scenario where the range of the joint angles as-
sumes practical values.

Figure 8. Different regions in the dexterity plot

Figure 7. Sectional view of the dexterity index (d)
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−150≤θ1≤150
−150≤θ2≤150 and
−175≤θ3≤175

As seen in Figure 11, the dexterity plot of the 
left half is distorted. This is due to the limitations 

of the first two joint angles. With limited joint 
angles, there will be fewer orientations possible 
about the point in the workspace when compared 
to Case 1.

Figure 9. Dexterity plot with the changed order of the links

Figure 10. Comparative views of workspace dexterity (case 1 vs. case 2) 
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EXAMPLE 2: INDEPENDENT TASK 
POINTS

Let us consider another design example where we 
need to design an optimal manipulator configura-
tion to have maximum dexterity while following 
the independent task points A(16,19), B(18,0), 
C(-8,-25), D(-15,11), E(-10,16), F(20,-21), and 
G(-7,27). We assume that the manipulator is at 
the origin of coordinate frame O (0, 0). Follow-
ing the steps in the proposed algorithm, we have:

1. 	 The minimum and maximum distances of 
the points from the manipulator base are 29 
(Point F) and 18 (Point B), such that 18≤d≤29

2. 	 We chose l3 = 15 such that l3<dmin
3. 	 From Equation (12), (13) we have l1 = 23 

and l2 =22

The simulation plots for the manipulator under 
all three cases can be seen in Figure 12. In Case 1 
where ideal joints are assumed, we see that all the 
task points are within the most dexterous band. 
The design ensures that the manipulator will be 
able to attain every possible orientation about 
each of the task points.

In Case 2 the lengths l2 and l3 are interchanged. 
As expected, the most dexterous band is greatly 
reduced and is very thin in this case. All the task 
points lie outside the most dexterous band. This 
simulation once again proves that in order to 
achieve maximum dexterous area, the shortest 
link in the manipulator chain should be the end-
effector or the last link.

In Case 3 we assume that the joints are with 
constraint, i.e. the joints can only attain a range 
of joint angles. As seen in Figure 12 the dexterity 
regions are very unsymmetrical when compared to 
the previous two plots, but the high dexterity bands 

Figure 12. Simulation plots for case 1, 2, & 3

Figure 11. Workspace dexterity plot under joint angle constraints
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are similar to the bands in Case 1. The dexterity 
bands are distorted to the left because the point 
in this region will have limited solutions due the 
joint angle constraints put in place. In spite of the 
joint constraint, three task points lie in the most 
dexterous region while the rest are located in high 
dexterity band, as in Figure 12.

6. CONCLUSION

In this chapter, we have proposed a simple al-
gorithm for generating optimal link lengths for 
a three-link planar manipulator. By adding a 
virtual stationary link in the chain, the three-link 
manipulator is converted into a four-link closed 
chain. Using Grashof’s criterion, we optimize the 
link lengths to achieve maximum dexterity in the 
desired regions of the workspace. Dexterity index 
plots of the workspace generated by simulating 
the optimal manipulator configurations meet our 
design. Simulations with the link order changed 
(Case 2) have shown that the manipulator has a 
maximum high dexterity area when the shortest 
link is also the last link (end-effector) of the ma-
nipulator. The dexterity index plots of the work-
space generated by applying Grashof’s criterion 
help in better task placement and trajectory plan-
ning, especially when the manipulators mobility 
is limited due to joint angle limitations (Case 3).

7. FUTURE RESEARCH

In our future research, we would focus on applying 
the extended Grashof’s criterion for N-bar chains 
for the prototyping of minimum degree of freedom 
(DoF) manipulators with optimal link lengths for 
accomplishing a specified task.
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