
8.7 Hybrid Systems and ControlTarek M. SobhComputer Science DepartmentUniversity of UtahIn this section we present an overview for the development of complex discrete event andhybrid systems within the robotics, automation, and intelligent system domain. We start bypresenting an overview of discrete event and hybrid systems, and then illustrate the conceptby an example from the robotics and automation domain. The application discussed is forformulating an observer for manipulating agents.8.7.1 IntroductionHybrid systems, in which digital and analogue devices and sensors interact over time, isattracting the attention of researchers. Representation of states and the physical systemcondition includes continuous and discrete numerics, in addition to symbols and logicalparameters. Most of the current robotics, automation, and intelligent systems problems, aswell as problems in other domains, fall within the description of hybrid systems. There aremany issues that need to be resolved, among them, de�nitions for observability, stability andstabilizability, controllability in general, uncertainty of state transitions and identi�cation ofthe system.The underlying mathematical representation of complex computer-controlled systems is stillinsu�cient to create a set of models which accurately captures the dynamics of the systemsover the entire range of system operation. We remain in a situation where we must tradeo�the accuracy of our models with the manageability of the models. Closed-form solutionsof mathematical models are almost exclusively limited to linear system models. Computersimulation of nonlinear and discrete-event models provide a means for o�-line design ofcontrol systems. Guarantees of system performance are limited to those regions where therobustness conditions apply. These conditions may not apply during startup and shutdownor during periods of anomalous operation.Recently, attempts have been made to model low and high-level system changes in automatedand semi-automatic systems as discrete event dynamic systems (DEDS). Several attemptsto improve the modeling capabilities are focused on mapping the continuous world into adiscrete one. However, repeated results are available which indicate that large interactivesystems evolve into states where minor events can lead to a catastrophe. Discrete event andhybrid system formulations have been used in many domains to model and control systemstate changes within a process. Some of the domains include: Manufacturing, Robotics, Au-tonomous Agent Modeling, Control Theory, Assembly and Planning, Concurrency Control,Distributed Systems, Hierarchical Control, Highway Tra�c Control, Autonomous Observa-tion Under Uncertainty, Operating Systems, Communication Protocols, Real-Time Systems,Scheduling, and Simulation.A number of tools and modeling techniques are being used to model and control discreteevent systems in the above domains. Some of the modeling strategies include: Timed,



Figure 8.1: A stochastically timed FSM window during analysisuntimed and stochastic Petri Nets and State Automata, Markovian, Stochastic, and Per-turbation models, State Machines, Hierarchical State Machines, Hybrid Systems Modeling,Probabilistic Modeling (Uncertainty Recovery and Representation), Queuing Theory, andRecursive Functions.There is a continuous need for environments to support the development of hybrid systems.A number of tools and graphical environments for simulating, analyzing, synthesizing, mon-itoring, and controlling complex discrete event and hybrid systems have been developed. Asnap shot of one such environment is shown in Figure 8.1.As an example, this software environment aids in the design, analysis and simulation ofDiscrete Event and Hybrid Systems. The environment allows the user to build a systemusing either Finite State Machines or Petri-Nets. The environment runs under X/Motifand supports a graphical DES (Discrete Event System) hybrid controller, simulator, andanalysis framework. The framework allows for the control, simulation and monitoring ofdynamic systems that exhibits a combination of symbolic, continuous, discrete, and chaoticbehaviors. It also includes stochastic timing descriptions (for events, states, and computationtime), probabilistic transitions, controllability and observability de�nitions, temporal, timed,state space, petri-nets, and recursive representations, analysis, and synthesis algorithms. Theenvironment allows not only the graphical construction and mathematical analysis of varioustiming paths and control structures, but also produces C code to be used as a controller forthe system under consideration. Next, we proceed to introduce the concept of hybrid systemsand control through an example application within robotics and automation.



8.7.2 Discrete Event and Hybrid Observation Under UncertaintyWe discuss a representation for the general problem of observation through a discrete eventand hybrid system framework. The system being studied can be considered as a \hybrid"one. This is due to the fact that we need to report on distinct and discrete visual states thatoccur in the continuous, asynchronous, and three-dimensional world, from two-dimensionalobservations that are sampled periodically. In other words, the system being observed andreported on consists of a number of continuous, discrete, and symbolic parameters that varyover time in a manner that might not be \smooth" enough for the observer, due to visualobscurities and other perceptual uncertainties.The problem of observing a moving agent was addressed in the literature extensively. Itwas discussed in the work addressing tracking of targets and determination of the optic 
ow[2,7,10,19]; recovering 3-D parameters for di�erent kinds of surfaces [6,14,17,18]; and alsoin the context of other problems [1,3,8,9]. However, the need to recognize, understand, andreport on di�erent visual steps within a dynamic task was not su�ciently addressed. Inparticular, there is a need for high-level symbolic interpretations of the actions of an agent.Those interpretations should attach meaning to the 3-D world events, as opposed to thesimple recovery of 3-D parameters and the consequent tracking movements to compensatetheir variation over time.In this work we establish a hybrid system framework for the general problem of observation,recognition, and understanding of dynamic visual systems. The framework may be appliedto di�erent kinds of visual tasks. We concentrate on the problem of observing a manipulationprocess in order to illustrate the ideas and motive behind our framework. We use a discreteevent dynamic system as a high-level structuring technique to model the visual manipulationsystem. Our formulation utilizes all existing knowledge about the system and the anticipatedactions in order to solve the observer problem. The resulting observer is e�cient, stable, andpractical. The model incorporates di�erent hand/object relationships and the possible errorsin the manipulation actions. It also uses di�erent tracking mechanisms so that the observercan keep track of the workspace of the manipulating robot. A framework is developed forthe hand/object interaction over time and a stabilizing observer is constructed. Low-levelmodules are developed for recognizing the \events" that causes state transitions within thedynamic manipulation system. The process uses a coarse quantization of the manipulationactions in order to attain an active, adaptive, and goal-directed sensing mechanism.The work examines closely the possibilities for errors, mistakes, and uncertainties in thevisual manipulation system, observer construction process, and event identi�cation mecha-nisms. The work leads to a DEDS formulation with uncertainties, in which state transitionsand event identi�cation is asserted according to a computed set of 3-D uncertainty models.We motivate and describe a DEDS automaton model for visual observation in the nextsection, and then proceed to formulate our framework for the manipulation process. Wethen develop e�cient, low-level event-identi�cation mechanisms for determining di�erentmanipulation movements in the system and for moving the observer. Next, the uncertaintylevels are discussed. Some results from testing the system are enclosed.



Hybrid and Discrete Event Dynamic Systems for Robotic ObservationHybrid systems, in which digital and analogue devices and sensors interact over time, isattracting the attention of researchers. Representation of states and the physical systemcondition includes continuous and discrete numerics, in addition to symbols and logical pa-rameters. Most of the current vision and robotics problems, as well as problems in otherdomains, fall within the description of hybrid systems. There are many issues that need tobe resolved, among them: de�nitions for observability, stability, stabilizability, and control-lability in general; uncertainty of state transitions; and identi�cation of the system. Thegeneral observation problem falls within the hybrid system domain, as there is a need toreport, observe, and control distinct and discrete system states. There is also a need forrecognizing the continuous 2-D and 3-D evolution of parameters. In addition, there shouldbe a symbolic description of the current state of the system, especially in the manipulationdomain.We do not intend to give a solution for the general problem of de�ning, monitoring, orcontrolling such hybrid systems in general. What we intend to present in this work is asuitable framework for the class of hybrid systems encountered within the robotic observationparadigm. The representation we advocate allows for the symbolic, numeric, continuous, anddiscrete aspects of the observation task. We conjecture that the framework could be exploredfurther, as a possible basis for providing solutions for general hybrid systems representationand analysis problems.We suggest employing a representation of discrete event dynamic systems, which is aug-mented by the use of a concrete de�nition for events. We also implement uncertainty model-ing to achieve robustness and smoothness in asserting state and continuous event variationsover time.Dynamic systems are sometimes modeled by �nite state automata with partially observableevents together with a mechanism for enabling and disabling a subset of state transitions[13,15,16]. The reader is referred to those references for more information about this classof DEDS representation. We propose that such a DEDS skeleton is a suitable high-levelframework for many vision and robotics tasks. In particular, we use a DEDS model as ahigh-level structuring technique for a system to observe a robot hand manipulating objects.Discrete event dynamic systems for active visual sensing An example of a high-level DEDS controller for part inspection can be seen in Figure 8.2. This �nite state machinehas some observable events that can be used to control the sequencing of the process. Themachine remains in state A until a part is loaded. When the part is loaded, the machinetransitions to state B where it remains until the part is inspected. If another part is availablefor inspection, the machine transitions to state A to load it. Otherwise, state C, the endingstate, is reached. If an interruption occurs, such as a misloaded part or inspection error, themachine goes to state D, the error state.Our approach uses DEDS to drive a semi-autonomous visual sensing module. The module iscapable of making decisions about the visual state of the manipulation process taking place.This module also provides both symbolic and parametric descriptions which can be used toobserve the process intelligently and actively.
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<done>Figure 8.2: A Simple FSMA DEDS framework is used to model the tasks that the autonomous observer system exe-cutes. This model is used as a high level structuring technique to preserve and make useof the known information about a manipulation process. The state and event description isassociated with di�erent visual cues; for example, appearance of objects, speci�c 3-D move-ments and structures, interaction between the robot and objects, and occlusions. A DEDSobserver serves as an intelligent sensing module. It utilizes existing information about thetasks and the environment to make informed tracking movements and autonomous decisionsregarding the state of the system.For determining the current state of the system, the sequence of events ahould be observed.A decision should also be made regarding the state of the automaton. State ambiguitiesare allowed to occur, however, they are required to be resolvable after a bounded interval ofevents. In a strongly output stabilizable system, the state of the system is known at boundedintervals. Allowable events can also be controlled (enabled or disabled) in a way that ensuresthe return - in a bounded time interval - to one of a desired and known set of states (visualstates in our case).One of the objectives is to make the system strongly output stabilizable, and/or constructan observer to satisfy speci�c task-oriented visual requirements. Many 2-D visual cues forestimating 3-D world behavior can be used. Examples include: image motion, shadows,color, and boundary information. The uncertainty in the sensor acquisition procedure, andin the image processing mechanisms should be taken into consideration while computing theworld uncertainty.The observer framework can be utilized for recognizing error states and sequences. Thisrecognition task will be used to report on visually incorrect sequences. In particular, if thereis a pre-determined observer model of a particular manipulation task under observation, thenit would be useful to determine if something goes wrong with the exploration actions. Thegoal of this reporting procedure is to alert the operator or autonomously supply feedback to



the manipulating robot so that it can correct its actions.DEDS for Modeling Observers DEDS can be considered as very suitable tools formodeling observers. In particular, in the manipulation observer domain, there is a need torecognize and report on distinct and discrete visual states. Those states might represent ma-nipulation tasks and/or sub-tasks. The observer should have the ability to state a symbolicdescription of the current manipulation agent action. The coarse de�nition of DEDS statesprovide a means for such symbolic state descriptions.The de�nitions for observers and the observer construction process for discrete event systemsare very coherent with the requirements for an autonomous robotic observer. The purpose ofDEDS observers is to be able to reconstruct the system state, which is exactly the requirementfor a visual observer. The observer needs to recognize, report, and possibly act, dependingon the visual manipulation state. The notions of controllable actions is easily mapped tosome tracking and repositioning procedures that the robotic observer will have to undertakein order to \see" the scene from the \best" viewing position. The actions which the observerrobot needs to perform depends on the sequence of \observable" events and the reconstructedstate path.Event descriptions in a visual observer are possibly a combination of di�erent 2-D and 3-Dvisual cues. The visual primitives used in an observer domain could be motion primitives,matching measures, object identi�cation processes, structure and shape parameters, and/ora number of other visual cues. The problem with a classical DEDS skeleton, is that itdoes not allow for smooth state changes under uncertainty in recovering the events. Wedescribe in the next sections techniques that facilitate the transition from a DEDS skeletonto a working hybrid observer for a moving manipulation agent. Stability and stabilizabilityissues are resolved in the visual observer domain by supplying suitable control sequences tothe observer robot. Those control sequences are activated at intermittent points in time inorder to \guide" the observer to the \desirable" set of visual states.State Modeling and Observer ConstructionManipulation actions can be modeled e�ciently within a discrete event dynamic systemframework. It should be noted that we do not intend to discretize the workspace of themanipulating robot hand or the movement of the hand. We are merely using the DEDS modelas a high level structuring technique to preserve and make use of the known information aboutmanipulation tasks. Furthermore, we also use all existing knowledge about the physicallimitations of both the observer and manipulating robots. The high-level state de�nitionpermits the observer to recognize and report on symbolic descriptions of the task, and thephysical relationships under observation. We avoid the excessive use of decision structuresand exhaustive searches when observing the 3-D world motion and structure.A bare-bone approach to solving the observation problem would have been to try and visuallyreconstruct the full 3-D motion parameters of the robot hand. The motion, shape, andstructure of the di�erent objects should also be recovered in 3-D. This process should bedone in real time while the task is being performed. However, this formulation is ine�cient,unnecessary, and for all practical purposes infeasible to compute in real time. In addition,the formulation does not provide any kind of interpretation for the meaning of the scene



evolution, nor does it allow for any symbolic recognition for the task under observation. Thelimitation of the observer reachability, and the extensive computations required to performthe visual processing are motives behind attempting a di�erent formulation. We view theproblem as a hierarchy of task-oriented observation modules that exploits the higher-levelknowledge about the existing system, in order to achieve a feasible mechanism of keepingthe visual process under supervision.State Space Modeling We do a coarse quantization of the visual manipulation actions,which allows modeling both continuous and discrete aspects of the manipulation dynamics.State transitions within the manipulation domain are asserted according to probabilisticmodels. Those models determine at di�erent instances of time whether the visual sceneunder inspection has changed its state within the discrete event dynamic system state space.Mapping the desired visual states to a DEDS skeleton is a straight forward procedure. Weattach a DEDS automaton state to each meaningful visual state within a manipulationaction. The quantization threshold depends on the application requirement. In other words,the state space can be expanded or contracted depending on the level of accuracy requiredin reporting and observing. A surgical operation step, performed by a robotic end e�ector,will obviously require an observer that reports (and possibly control the e�ector within aclosed-loop visual system) with extreme precision. The observer for a robotic manipulatorwhose task is to pile up heaps of waste would, most likely, report in a crude fashion, thusneeding a small number of states. The quantization threshold depends heavily on the natureof the task and the application requirements. The DEDS formulation is 
exible, in the sensethat it allows di�erent precisions and/or state space models, depending on the requirements.The task of building DEDS automaton skeletons for observer agents can be performed ei-ther manually or automatically. In the manual formation case, the designer would have todraw the automaton model that best suits the task(s) under observation, depending on theapplication requirements. The code for the state machine then needs to be implemented.Automatic construction of the state machine could be done by having a learning stage [11,12],in which a mapping module would form the automaton. The building phase is performedbefore the actual observation process is invoked. The idea is to supply the module with setsof possible sequences in the form of strings of a certain language that the DEDS automatonshould minimally accept. The language could be either supplied by an operator, in whichcase, the resulting automaton performance will depend on the relative skill of the operator,or through showing the module a sequence of visual actions and labeling those actions appro-priately. The language strings should also be accompanied by a set of transitional conditionsas event descriptions. The module would then produce the minimal DEDS automaton code,complete with event and state descriptions that accepts the language.We next discuss building the manipulation model for some simple tasks, then we proceed todevelop the observer for these tasks. Formulating the models for the state transitions, theinter-state continuous dynamics, and recovering uncertainty will be left for the sections thatdeal with the di�erent uncertainty levels and event identi�cation mechanisms.Building the Model The ultimate goal of the observation mechanism is to know at all(or most) of the time the current manipulation process. The fact that the observer will have



to move, makes one think of the stabilizability principle for general DEDS, as a model forthe tracking technique to be performed by the observer's camera.In real-world applications, many manipulation tasks are performed by robots, including,but not limited to, lifting, pushing, pulling, grasping, squeezing, screwing, and unscrewingof machine parts. Modeling all tasks, and also the possible order in which they are to beperformed is possible to do within a DEDS state model. The di�erent hand/object visualrelationships for di�erent tasks can be modeled as the set of states X. Movements of thehand and object, either as 2-D or 3-D motion vectors, and the positions of the hand withinthe image frame of the observer's camera can be thought of as the events set �. The eventscause state transitions within the manipulation process. Assuming, for the time being,that we do not have direct control over the manipulation process itself, we can de�ne theset of admissible control inputs U as the possible tracking actions that can be performedby the hand holding the camera. Those actions can alter the visual con�guration of themanipulation process (with respect to the observer's camera). Furthermore, we can de�nea set of \good" states, where the visual con�guration of the manipulation process enablesthe camera to keep track of, and to know the movements in the system. Thus, it can beseen that the problem of observing the robot reduces to the problem of forming an outputstabilizing observer (an observer that can always return to a set of \good" visual states) forthe system under consideration.It should be noted that a DEDS representation for a manipulation task is by no meansunique. In fact, the degree of e�ciency depends on the designer who builds the model forthe task. Testing the optimality of a visual manipulation models is an issue that remainsto be addressed. Automating the process of building a model was discussed in the previoussection. As the observer identi�es the current state of a manipulation task in a non ambiguousmanner, it can then start using a practical and e�cient way to determine the next state withina prede�ned set. Consequently, it can perform the necessary tracking actions to stabilize theobservation process with respect to the set of good states. That is, the current state of thesystem tells the observer what to look for in the next step.� A Grasping TaskWe present a simple model for a grasping task. The model is that of a gripper approachingan object and grasping it. The task domain was chosen for simplifying the idea of buildinga model for a manipulation task. It is obvious that more complicated models for graspingor other tasks can be built. The example shown here is for illustration purposes.As shown in Figure 8.3, the model represents a view of the hand at state 1, with no objectin sight. At state 2, the object starts to appear. At state 3, the object is in the claws of thegripper, and at state 4, the claws of the gripper close on the object. The view as presentedin the �gure is a frontal view with respect to the camera image plane. However, the handcan assume any 3-D orientation as so long as the claws of the gripper are within sight ofthe observer. An example of this would be the case of grasping an object resting on a tiltedplanar surface. This demonstrates the continuous dynamics aspects of the system. In otherwords, di�erent orientations for the approaching hand are allowable and observable. Statechanges occur only when the object appear in sight, or when the hand encloses it. The
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Figure 8.5: Di�erent Views of the Lord Grippermodel. It can be seen that by enabling the tracking event from the state (5, 6) to the state(1, 2), all the system can be made stable with respect to EO. The singleton states representthe instances in time where the observer will be able to determine - without ambiguity - thecurrent state of the system.In the next section we shall elaborate on de�ning the di�erent events in the visual manip-ulation system. We also discuss di�erent techniques for event and state identi�cation. Aframework for computing the event uncertainty will be introduced.Examples Experiments were performed to observe the robot hand. The Lord experimentalgripper is used as the manipulating hand. Di�erent views of the gripper are shown inFigure 8.5. Tracking is performed for some features on the gripper in real time. The visualtracking system works in real time and a position control vector is supplied to the observermanipulator.Some visual states for a grasping task using the Lord gripper, as seen by the observer camera,is shown in �gure 8.6. The sequence is de�ned by our model, and the visual states correspondto the gripper movements as it approaches an object an then grasps it.The full system is implemented and tested for some simple visual action sequences. One suchexample is shown in �gure 8.7. The automaton encodes an observer which tracks the handby keeping a �xed geometric relationship between the observer's camera and the hand, aslong as the hand does not approach the observer's camera rapidly. In that case, the observertends to move sideways, that is, dodge and start viewing and tracking from sideways. Itcan be thought of as an action to avoid collision. State 1 represents the visual situationwhere the hand is in a centered viewing position with respect to the observer and viewedfrom a frontal position. State 2 represents the hand in a non-centered position and tendingto escape the visual view, but not approaching the observer rapidly. State 3 represents a\dangerous" situation as the hand has approached the observer rapidly. State 4 representsthe hand being viewed from sideways, and the hand is centered within the imaging plane.Having de�ned the states, the events causing state transitions can be easily described. Evente1 represents no hand movements. Event e2 represents all hand movements in which the handdoes not approach the camera rapidly. Event e3 represents a large movement towards theobserver. Events e4 and e5 are controllable tracking events. Event e4 always compensatesfor e2 in order to keep a �xed 3-D relationship, and e5 is the \dodging" action where theobserver moves to start viewing from sideways, while keeping the hand in a centered position.The events can thus be de�ned precisely as ranges on the recovered world motion parameters.For example, e3 can be de�ned as any motion VZ � dz. Event e1 is de�ned as any motion



Figure 8.6: A Grasping Task : As seen by the observer's camera
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such that : ��x � VX � �x ^ ��y � VY � �y ^ ��z � VZ � �zIt should be noted that de�ning e1 in this manner helps a lot in suppressing noise. Havingde�ned the events, the task reduces to computing the relevant areas under the probabilitydistribution curves for the various 3-D motion parameters. State transitions are assertedand reported when the probability value exceeds a preset threshold. States 1 and 4 areconsidered to be the set of stable states. By enabling the tracking events e4 and e5, thesystem can be made stable with respect to that set.The low level visual feature acquisition is performed on the MaxVideo pipelined video pro-cessor at frame rate. The state machine resides on a Sun SparcStation 1. The Lord gripperis mounted on a PUMA 560 arm and the observer's camera is mounted on a second PUMA560.Identifying Motion EventsWe use the image motion to estimate the hand movement. This task can be accomplishedby either feature tracking or by computing the full optic 
ow. The image 
ow detectiontechnique we use is based on the sum-of-squared-di�erences optic 
ow. The sensor acquisi-tion procedure (grabbing images), and the uncertainty in image processing mechanisms fordetermining features, are factors that should be taken into consideration when we computethe uncertainty in the optic 
ow.One can model an arbitrary 3-D motion in terms of stationary-scene/moving-viewer as shownin Figure 8.8. The optical 
ow at the image plane can be related to the 3-D world as indicatedby the following pair of equations for each point (x; y) in the image plane [14] :vx = �xVZZ � VXZ �+ hxy
X � �1 + x2�
Y + y
Zivy = �yVZZ � VYZ �+ h�1 + y2�
X � xy
Y � x
Ziwhere vx and vy are the image velocity at image location (x; y), (VX ; VY ; VZ) and (
X ;
Y ;
Z)are the translational and rotational velocity vectors of the observer, and Z is the unknowndistance from the camera to the object. In this system of equations, the only knowns are the2-D vectors vx and vy. If we use the formulation with uncertainty, then the 2-D vectors arerandom variables with a known probability distribution. A number of techniques can be usedto linearize the system of equations and to solve for the motion and structure parameters asrandom variables [4,5,17].Modeling and Recovering 3-D UncertaintiesThe uncertainty in the recovered image 
ow values results from sensor uncertainties, noise,and the image processing techniques used to extract and track features. We use a staticcamera calibration technique to model the uncertainty in 3-D to 2-D feature locations. The
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Figure 8.8: 3-D Formulation for Stationary Scene/Moving Viewerstrategy used to �nd the 2-D uncertainty in the features 2-D representation utilizes therecovered camera parameters, and the 3-D world coordinates (xw; yw; zw) of a known setof points. The corresponding pixel coordinates are then computed, for points distributedthroughout the image plane a number of times. We then �nd the actual feature pixel coor-dinates and construct 2-D histograms for the displacements from the recovered coordinates.The number of the experiments giving a certain displacement error would be the z axis ofthis histogram, while the x and y axis are the displacement error. The three dimensionalhistogram functions are then normalized such that the volume under the histogram is equalto 1 unit volume and the resulting normalized function is used as the distribution of pixeldisplacement error.The spatial uncertainty in the image processing technique is modeled by using synthesizedimages and corrupting them. We then apply the feature extraction mechanism to both kindsof images and compute the resulting spatial histogram for the error in �nding features. Theprobability density function for the error in �nding the 
ow vectors can thus be computedas a spatial convolution of the sensor and strategy uncertainties. We then eliminate theunrealistic motion estimates by using the physical (geometric and mechanical) limitations ofthe manipulating hand. Assuming that feature points lie on a planar surface on the hand,then we can develop bounds on the coe�cients of the motion equations. These are seconddegree functions in x and y in three dimensions, vx = f1(x; y) and vy = f2(x; y).The 2-D uncertainties are then used to recover the 3-D uncertainties in the motion andstructure parameters. The system is linearized by either dividing the parameter space intothree subspaces for the translational, rotational, and structure parameters and solving iter-atively; or using other linearization techniques, and/or assumptions to solve a linear systemof random variables [4,5,6,17,18,20]. As an example, the recovered 3-D translational veloc-ity cumulative density functions for an actual world motion, VX = 0 cm, VY = 0 cm andVZ = 13 cm, is shown in �gure 8.9. It should be noted that the recovered distributionsrepresents a fairly accurate estimation of the actual 3-D motion.Utilizing the Discrete Event ObserverState transitions are asserted within the DEDS observer model according to the probabilityvalue of the occurrence of an event. Events are thus de�ned as ranges for the di�erent
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-0.10Figure 8.9: Cumulative Density Functions of the Translational Velocityparameters. The problem then reduces to computing the corresponding areas under there�ned distribution curves. An obvious way of using those probability values is to establishsome threshold values, and assert transitions according to those thresholds. It might be thecase that none of the obtained probability values exceeds the set threshold value, and/or allvalues are very low. In that case, there is a good chance that we are at the wrong automatastate. The remedy to such problems can be implemented through time proximity, that is,wait for a while (which is to be preset) till a strong probability value is registered. Anothertechnique is to backtrack in the observer automaton model till a high enough probabilityvalue is asserted, a fail state is reached, or the initial ambiguity is asserted. The backtrackingstrategy can be implemented using a stack-like structure associated with each state that hasalready been traversed. The stack includes a sorted list of the computed event probabilities,and a father-state variable.ExperimentsExperiments were performed to observe the robot hand. The low level visual feature acqui-sition is performed on the Datacube MaxVideo pipelined video processor at frame rate. Theobserver and manipulating robots are both PUMA 560's and the Lord experimental gripperis used as the manipulating hand.The experiments were shot with three video camera. The right hand side of the imagesshows the actual observer and manipulation workspaces, and the di�erent con�gurationsas the experiment proceeds. The upper left corner shows the observer view, which is theset of images grabbed by the observer camera for processing. The lower left corner showsthe observer state, that is, what the observer \thinks". A graphical representation of thedi�erent states and their change is used. Fail states are represented by an empty box. Figures8.10 and 8.11 illustrate a manipulation experiment. In this sequence the hand tries to inserta peg in a hole. The observer approaches and focuses on the peg and hole when the peggets nearer to the hole. State changes occur when the hole appears and when insertion isasserted.ConclusionsWe described a system for observing a manipulation process. The proposed approach can begeneralized for other hybrid systems involving di�erent kinds of quantization requirements.The use of discrete event dynamic systems with uncertainty modeling enables the observer
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to recognize tasks robustly. The proposed system also utilizes the a-priori knowledge aboutthe task domain in order to achieve e�ciency and practicality. The high level formulationallows for recognizing and reporting on the visual system state as a symbolic description ofthe observed tasks.Thus, we have proposed a new approach to solving the problem of observing a moving agent.Our approach uses the formulation of DEDS as a high-level model for the evolution of thevisual relationship over time. The proposed formulation can be extended to accommodatefor more manipulation processes. Increasing the number of states and expanding the eventsset would allow for a variety of manipulating actions.8.7.3 ConclusionsThe control, analysis, modeling, synthesis, simulation, and monitoring of hybrid and discreteevent systems are becoming more and more crucial in the current complex factory 
oorenvironments. We have discussed and presented hybrid systems through a problem relatedto robotics and automation for which discrete event and hybrid systems formulations play asigni�cant role in the solution.Acknowledgments:This work was supported in part by NSF grant CDA 9024721, and a University of UtahResearch Committee grant. All opinions, �ndings, conclusions or recommendations expressedin this document are those of the authors and do not necessarily re
ect the views of thesponsoring agencies.
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