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Visualization of Tolerance for Manufaturing
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Abstract: In this study the problem of visualizing uncertainty in sensed data for manufacturing applications
is discussed. Constructing geometric models for the objects from sense data is the intermediate step in a reverse
engineering manufacturing system. Sensors are usually inaccurate, providing uncertain sense information. We
construct geometric entities with uncertainty models for the objects under consideration from noisy
measurements. This case study mainly addresses recovering uncertainty in the geometric entities, in order to
aid making later decisions about the geometry of the reconstructed parts.
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INTRODUCTION

Reverse engineering is a process that reconstructs a
representation of a physical model, so that it can be
reproduced identically. It is a new branch in the
CAD/CAM field. Parts are manufactured according to
blue prints, but when blue prints are not available, (such
as, the part is too oldand its blue prints are missing),
reverse engineering can be used to reproduce these parts.
This can be achieved by the following two steps, sensing
the part to construct its CAD representation and then
manufacturing the part according to the representation. It
is easy to see that the accuracy of measurement is the key
to success in reproducing an accurate CAD model.

The accuracy of the measurement can be
improved not only by improving the quality of
measuring instrument, but also by optimizing sampling
data. A reverse engineering system has been built
and the measuring process is done by a vision sensor
(B/W CCD camera).

In our reverse engineering system, we use a
probabilistic approach to provide information for further
measurements required to refine the CAD modeland also
gives a quantitative measure of the accuracy of the
current CAD model. The geometric reasoning on the
probabilities of uncertain geometries can guide the sensor
to perform focused measurements to allow for higher
accuracy and efficiency. For instance, the slot (Fig. I), in
mechanical engineering is a commonly used feature and
the parallelism of the two side planes is an important
measurement.

The two side planes are based on sampling points
from sensed data. Measurements of these points are not
exact, therefore, these two planes that are constructed
from these measurements, are planes with probabilities as

the confidence measure. Consequently, the parallelism is
no longer a definite relation, it has a probability
distribution. If the confidence of the parallelism does not
satisfy the manufacturing requirement, refinement of the
two side planes is required; hence re-measuring of the
points is performed.

Some work has been done in the probabilistic
relationship between the geometric objects and their
relations, but the probability relations between the
sampling points and geometric primitives have not yet
been studied extensively. The geometric objects that this
probabilistic geometric modeler is based on are
constructed from sensing data. Therefore, study of the
relation of the probabilistic characters of geometric
objects and sensing data is very important. This work

-
Fig. 1: The slot mechanical engineering is a used feature
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presents the study of these relations and ways of
visualizing them. The work addresses the statistic
geometric objects constructed from sensing data,
relations of these statistic geometriesand the effect of
decisions on its relative geometric objects.

Related work: Stochastic geometry has been
systematicalIy studied by mathematicians. In (KandalI and
Moran, 1963) mathematical theories of stochastic
geometry are welI studiedand uncertain geometric features
can be represented as constrained functions. Classic
examples of stochastic geometry can be found in
(Burtrand, 1907; Kendall and Moran, 1963), describe a
method of choosing distributions on geometric elements
which provide a consistent interpretation of physical
geometric elements.

Recently, research about sensing and uncertain
geometry in robotics presents lots of ideas for handling
uncertainty geometry. Hugh F. (Durrant-Whyte 1986,
1988) in has modeled the sensor in a manner that explicitly
accounts for the inherent uncertainty encountered in
robot operations. In Davidson's thesis Davidson (1968)
he made the important observation that arbitrary random
geometric objects can be described by a point process in
parameter space.

In computer-aided geometric modeling,
methodologies for building a robust geometric modeler
explore ways of handling the uncertain geometry caused
by the imprecise computations. Arbitrary decisions
are made, when uncertainty arises. In (Zhu, 1993;
Bruderlin, 1990, 1991; Fang and Bruderlin, 1992, 1991;
Bruderlin and Fang, 1992; Bruderlin, 1990; Fang et a/.,
1992, 1993;Fang, 1992) three region tolerances are used to
keep track of uncertainty caused by the computational
error. In (Fang, 1993), arbitrary decisions are made and
corresponding uncertainties are restricted.

Representations for uncertain geometry: In geometric
modeling, algorithms and representations for geometric
objects are well developed, but the tolerance (uncertainty
of geometry) has not yet been welI defined. In (Zhu, 1993),
a geometric object is represented by boundary and hybrid
representations, associated with a tolerance representing
the uncertainty ofthe geometry.

Based on the representations that has been
developed and used in (Zhu, 1993), a representation for
uncertain geometry is developed as follows:

An uncertain geometric object is represented in two
parts: a geometric description and a probabilistic
distribution of geometry. The geometric description is a
parameter vectorand the probabilistic distribution of
geometry is a vector of the same dimensions as the
geometric description, but with corresponding
probabilistic distributions of the parameters.

For instance, a plane can be specified as an equation:
(A, B, C), (f., fb, fe), where (A, B, C) is the geometric
description and z = Ax+By+C. (r., fb,fJ is the probabilistic
distribution of geometryand also can be specified in
another form: (P, V), (fp,f.), where P is a base pointand V
is the normal vector of the plane. fbis the uncertainty of
the base pointand f. is the uncertainty of the normal
vector. It can be proved that fp and f. can be computed
from r., fb,(and P, V can be computed from (A, B, C). By
defining fa> fb, fe' different types of probability
distributions can be handled by this representation.

Experiment on statistic geometric objects constructed
from sensing data: The geometric objects being dealt with
are constructed from the sensed data. How the
distribution of sensing data affects the uncertainty of the
geometry is the basis for defining the distributions of the
geometry. In this section, the uncertainty of the plane
relating to the sensing 3D coordinates is studied. A set of
discrete sensing data is used to perform the
computations.

Best least square fit: In order to reduce the random
error, usualIy, n sampling points are measured to defining
a plane, yet the points have certain probability
distributions which mainly depend on the measuring
machine, the n points are independent random events.
Therefore, a best least square fit method for computing
the plane parameter is used. This approach gives the
maximum likelihood result and confidence on the sampling
data to be a plane.

Assuming that input data is (x;, y;, z;), where X;,Yi,Zj
are either fixed values, or probability functions. They can
be either independent, or correlated. Explicit function
definition for a plane in 3D will be Z= Ax+By+C. Ifthere
are n points, the best least fit plane should be the solution
of the following equation set.

Z=p.x

-

X~[~]
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Because P is an n x 3 matrixand X is a 3xl matrix,
rank(P) = 3and n = 3, solution of X is unique. When
n > $, the solution X is a best least square fit.

Or in the other form:

A=f(x,y,z)

B=f(x,y,z)

C=h(x,y,z)

Where x E [xu x2],y E [YI,Y2]'z E [z" Z2]are discrete.
Function f, g, h are non-linear functions. To compute the
probability distribution of A, Band C, exhaustively
computing values of f, gand h, will provide the discrete
probability distribution array for A, Band C.

From the above mathematics, we can see that the
computation complexity is exponential. Ifm is the number
of distribution values and n is the number of
sampling points, this above computation will be
performed (3m).times.

Sensing data and its corresponding results: The sensing
data is modeled by discrete points with their
corresponding probabilities. Normally, a point in 3D is
represented as (x, y, z), but for this sensing data, x, yand
z, are no long a single value; they are distributions as
shown in Fig. 2.

Due to the computational complexityand the
generality of the problem, a three distribution values data
set is used for experiments. The resulting planes (A, B, C)
along with their distributions are computed. Graphs of A,
Band C distributions are approximated by the following
computations.

What we want to get is the concept of the f(x) shape.
The data we computed are discrete state vector (A, B, C)
and its probability. is computed and plotted,

x.+1

P(xj < X< Xi+l)= f f(x)
x,

Probability

0.24
0.20

0.04

x-OOlx Data value

Fig. 2: Sesing data

Probability

0.33
0.2 I 0.2

Data value

Fig. 3: Uniform distribution

Probability
0.5

0.25
0.2 I 0.2

Data value

Fig. 4: Gaussian distribution

where x can be A, B, or C. and Xmin= Xi= xm". In order to
smooth the curve, an overlapped set of X;is used. In the
result figures, the x axis are the values of A, B, C
respectivelyand the y axis are the corresponding
probability of that value.
Test] : Uniform distribution: the sensing data is shown in
Fig. 3. There are a total three points with such
distributions; planes defined by these points are
computed.
Test 2: Gaussian distribution: the sensing data is shown
in Fig. 4. There are a total of three points with such
distributions; the planes defined by these points are
computed.

Next, we discuss an algorithm for visualizing the
groups of resulting probabilistic planes from the sensed
data.

Visualizing sensed data for planar surfaces
Problem: Given sensed data for planar surfaces the
goal is to design an algorithm for grouping this
data and then finding effective ways of visualizing
these groups. .

Each actual planar surface is represented by a very
large number of planes of the form: -

Z = a, X+b, Y+c,
Z = a2X+b2Y+c2
Z = a. X+b. Y+c.
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Ai, bj, G values for each of the above planes.
Probability of each plane represented by (ai' bj, cj) of
being the actual planar surface.

Given the above sensed data we want to find a way to
cluster these (a;, b;, cYs according to their spatial
proximity in (a,b,c) 3D space and then to find a suitable
way of visualizing these clusters.

The algorithm: The Algorithm has the following three
basic steps:

Use a Recursive Algorithm to find all pairs of points
(aj, aj) such that the distance between them does not
exceed a small number 8.

The above step returns a set of clusters each having
two elements such that the distance between these
two elements does not exceed a smaIl number

$\epsilon$. In this step we group all those clusters
having one common element i.e. if(0,1),(0,2),(0,3) are
some of the clusters returned by the previous then
this step would combine these three clusters to form
a final cluster (0,1,2,3). So this step in effect reduces
the number of clusters returned by the previous step
by combining all those clusters which have points at
a distance not more than $\epsilon$ from a common
point which is the SEED for that cluster.
The goal of this step is to combine clusters returned
by the previous step by identifying the Seed for each
cluster. In this step we represent each cluster as a n
band of planes where n is the number of (a, b, c)
values in this cluster. The planes are represented by
triangles. Each cluster is represented in a different
color. The thickness of a set of triangles representing
a cluster are a measure of the probability of this set
of a, b, c values of being that of the actual plane.

Detailed description of the algorithm: Step 1: Our
Algorithm uses the n-dimensional BILS Method
(Midori, 1993).

N-dimensional bills method: Suppose we wish to solve an
n dimensional problem: for a set S = ai, a2,... amof m
points in n dimensional space report all coincident pairs
(aj, a) such that aj and a /i<j) are points in S and the
distance between a; and aj does not exceed a given smaIl
number E

Let aj in S be represented as an ordered setof n
floatingpointnumbers(Pi!,Pi2' Pin)'SO, ai = (Pi!, Pi2'....
P;') for i = 1,2,... m

In each axis direction k, we find the lower bound Ibk
and the upper bound ubk. Thus we can find the bounding

box which encloses S by n intervals [lbj, ubj], where
j = I,2,...,n.

The algorithm computes the dividing axis k as R
modulo n where R is the current recursion depth and n is
the dimension of the space. The kth interval of the
bounding box B is subdivided into two subintervals of
equal size [Ibk,midpoint] and [midpoint, ubk].Hence the
bounding box B is subdivided into two boxes B, and B2.

The original List of indices L is subdivided into two
sublists L, and L] so that L, contains the indices of all
points which are in B, and L] contains the list of all indices
which are in B]. The List is subdivided into two lists L,
and L] by simply comparingthe kth co-ordinateP;k of a;

. withtwothresholdvalues(midpoint-8)and(midpoint+8)
for each element i in the List. The algorithm allows the
index list subdivision method to be binary subdivision
regardless of the dimension of the space.

The above algorithm as given by (Midori, 1993) does
not give a way on deciding on E and the value of E is
constant regardless of the data points. Our algorithm is
adaptive because the value of E changes for different
clusters depending on the data points. In our algorithm
we set E to a small value initially and keep increasing E
and calling the above recursive algorithm till all the a, b, c
values are in some cluster. At the end of this step
each cluster has a pair of points at a distance not more
than E from each other where E may be different for
different clusters.

Our Algorithm:
E = 1;
DONE = FALSE;
While NOT DONE

DONE = TRUE;
rec-depth = 0;
Initialize the bounds array to the minimum and maximum
values along the X,Y and Z directions.
biIs(index,num-eIements,bounds,rec-depth);
For each element i in the index array
If any element is not in a cluster
DONE = FALSE;
increment E by 1;
end of while

In the above algorithm:

The bounds array has the minimum and maximum

value in all axis directions. In our case we are working
with 3D points and so X, Y and Z are the axis
directions.

The index array has the list of all indices.
num-elements is the total number of (a, b, c) values.
rech-depth is the recursion depth.

-
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The above algorithm calls the following bils algorithm:
bils(index-list,num-index, b,curr-rec-depth)
If((num-index <= E) OR (curr-rec-depth == MAX-
DEPTH»
search(index-list,num-index);
else

k = curr-rec-depth modulo n;
nl=0;n2=0;
Let the mean of $lb-k$ and $ub-k$ be midpoint, where lbk
and ubk are the lower and upper bounds of the kth
dimension.
For each element i in the index_list
Let k[i] be the kth co-ordinate of a point Uiin S.
Ifk[i] <=$ (midpoint + E)
add i to list}; increment n} by 1.
Ifk[i] >=$ (midpoint- E)
add i to list2; increment n2 by 1.
If(n} > I)
Set the kth interval of b to be [Ibk,midpoint];
bils(listl,n 1,b,curr-rec-depth+ I);
If(n2 > 1)
Set the kth interval of b to be [midpoint, ubk];
bils(list2,n2,b,curr-rec-depth+ I);

In the above algorithm:

Index-list array has the list of all indices.
Num-index is the total number of (a, b, c) values.
B has the minimum and maximum values in each axis
direction.

Curr-rec-depth is the current recursion depth.
S is the list of (a, b, c) values.

Step 2: This step combines clusters returned by the
previous step and the criterion for combining is that the
elements in a final cluster should be within a distance not
more than E from the seed of the cluster.

i = 0; j = 1; finaLcluster30unt = 0;
Let the first and second element in cluster i be clusteril
and cluster;2 respectively.
Let the first and second element in cluster j be cluster"
and cluster 12respectively.
For each cluster i in the cluster array
If cluster" is not in any final-cluster
SET SEED =cluster II;

Put cluster il in final-cluster.

If cluster i2 is not in any final-cluster
Put cluster12infinal-cluster k
else

If $cluster i2is not in any final-cluster
SET SEED = cluster ;2;
Put cluster i2infinal-cluster k.
For each cluster j in the cluster array (i < j)
If (clusterj, == SEED)

If clusterj2is not in any final-cluster
Put clusterj2 infinal-cluster k
increment final-cluster-count;
increment i;
SET j = 1+1;

Step 3: Once we have the final clusters i.e. for each cluster
we have a set of a, b, c values. These a, b, c values
represent planes of the form Z = a X+bY+c
For each a, b, c value in a cluster we find the intersection
of the plane it represents with the three principal axes X,
Y,Z.
Intersection with Z axis put X = 0, Y = 0 and so we get (0,
0, c).
Intersection with X axis put Z = 0, Y = 0 and so we get
(-cia, 0, 0).
Intersection with Y axis put X = 0, Z = 0 and so we get (0,
-c/b, 0).
So we now have three points on the plane i.e. the
intersection with X, Y and Z axes. We therefore represent
each plane as a triangle. A cluster is represented as a
band of triangles. Each plane has a probability of being
the actual plane. Now a cluster has a number of such
planes. A cluster with more planes will have a higher
cluster probability and this is indicated by the thickness
of the triangles.

Statistical geometries and their effect on relative
geometries: The above algorithm has been implemented
using the C Language and GL on SOl (IRIS) workstation
and provision has been given to zoom and rotate the
figure interactively to help in visualizing. Sensed data
from four actual planes was used.

As mentioned in the introduction, the goal of this
probabilistic approach is to feedback control to the
sensing devices to measure the physical model and give
a quantitative confidence measurement for the CAD
model. Some relations of these uncertain geometries are
computedand results are computed with their uncertainty
distributions.

Basically, geometric relations are set relations, such
as: intersecting, coincidence, incidence, apartnessand
parallelism. Because of the uncertainty of the geometries,
these relations are not definite, they are decisions with
certain confidence, also, this confidence can be specified
by its probability. For instance, a point incident on a
plane, can be computed as a point incident on the
plane with 0.9 probability. This provides reasoning based
on probabilities (Table 1).

Table 1:Reasoning based on probabilities
ABC
1.034723 -0.961805 2.386458
1.036584 0.966461 2.391768
1.038042 0.970109 2.395936

P (Probability)
0.33
0.34
0.33

-
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A feedback computation of a plane that is supposed
to be collinear with a given plane is studied. A program
that takes the output discrete planes along with their
probabilities is implementedand the cases of parallel and
collinear statements are computed with their probabilities.
Some examples of parallelism and co linearity have been
tested. For example, co linearity and parallelism of the
uniform distribution planes (as described above has been
tested). The probability for parallelism is 0.824719, for co
linearity is 0.334722. The parallelism and co linearity of the
planes of the three points Gaussian distribution and the
uniform distributions have also been tested. The

parallelism is 0.66730846and the co linearity is 0.27099140.
(the tolerance for testing them is the square distance less
than IOe.2)

If we assume that the plane constructed from the
uniform distribution sensing data is decided to be
collinear to the plane defined by the above table, then, its
distribution is recomputed as follows: among this plane
set, the plane instances which are not collinear with any
of the plane instances in the given plane set, is discarded.

CONCLUSION

Based on real sensing data, the probability of the
geometry of the objects under consideration is computed
and visualized. This provides us with the capability to
define the probability distribution of the geometry based
on robust computations as opposed to noisy measuring
instruments. The relations between uncertain geometries
are dependent on the uncertainty of geometries.
Quantitative measurement for the constructed CAD model
can thus be computed and decisions can be made with the
help of the visualization modules.
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