World Scientific

New Mathematics and Natural Computation \\ﬁ
www.worldscientific.com

Vol. 4, No. 1 (2008) 87-106
(© World Scientific Publishing Company

USING GRAPHEME n-GRAMS IN SPELLING CORRECTION
AND AUGMENTATIVE TYPING SYSTEMS

ALKET MEMUSHAJ and TAREK M. SOBH*

School of Engineering
University of Bridgeport, Connecticut, USA
*sobh@bridgeport.edu

Probabilistic language models have gained popularity in Natural Language Processing
due to their ability to successfully capture language structures and constraints with
computational efficiency. Probabilistic language models are flexible and easily adapted
to language changes over time as well as to some new languages. Probabilistic language
models can be trained and their accuracy strongly related to the availability of large text
corpora.

In this paper, we investigate the usability of grapheme probabilistic models, specifi-
cally grapheme n-grams models in spellchecking as well as augmentative typing systems.
Grapheme n-gram models require substantially smaller training corpora and that is one
of the main drivers for this thesis in which we build grapheme n-gram language models
for the Albanian language. There are presently no available Albanian language corpora
to be used for probabilistic language modeling.

Our technique attempts to augment spellchecking and typing systems by utilizing
grapheme n-gram language models in improving suggestion accuracy in spellchecking
and augmentative typing systems. Our technique can be implemented in a standalone
tool or incorporated in another tool to offer additional selection/scoring criteria.

Keywords: Natural language processing; language modeling; statistical language model-
ing; grapheme n-grams.

1. Background Research
1.1. Introduction

The field of Natural Language Processing (NLP) began in earnest in the 1950s and
since then, it has grown into a major field of study with a large number of practical
applications such as speech recognition, spelling correction, handwriting recognition,
optical character recognition, etc.”® NLP focuses on modeling natural languages
in order to capture and to utilize the structures they exhibit. Early NLP efforts
have focused on linguistic, rule-based approaches such as generative grammars that
specify the well-formed expressions of a natural language. These rigorous linguistic
models were complex, inflexible and indeed have suffered from their inability to
adapt and evolve into the usage of the language, new domains of knowledge, as
well as new languages. More current NLP efforts are making wide use of statistical

87

88 A. Memushaj & T. M. Sobh

methods in language processing when probabilistic language models have proven to
be easily constructed, adapted and commercially successful.

Probabilistic language models are constructed based on statistical processing of
large text corpora. Collocations, expressions consisting of two or more words that
are usually used together, are the simplest expression of knowledge that can be
gained by statistical processing. From collocations, one can generalize and attempt
to rephrase the problem as the probability with which words are placed next to
each other or even beyond. One of the best known statistical models is the n-gram
model which attempts to assign a probability to an unobserved event based on the
n— 1 previously observed events. Language models based on n-grams are created by
assigning a probability to the occurrence of the next word, after n — 1 words have
already been observed. N-gram models are trained by processing large amounts
of data so that we can account for every possible occurrence of the words in a
vocabulary.

1.2. Markov chains

Markov chains underlie the field of statistical natural language processing. A Markov
Chain is a special case of a Weighted Automata. In a Markov Chain, the input
sequence uniquely determines the state change sequence. A Markov Chain assumes
that the next state depends only on a finite number of previous states.

Let Xy, X1, Xo, X3,..., X, be asequence of random variables taking their values
in the same finite alphabet X = {X = 0,1,2,...,c}. In this case, the Bayes’ formula
applies:

n
P(X1,Xa,..., X,) = [[P(Xil X1, X, .., Xia)
i=1
The random variables are said to form a Markov Chain if for all values of i:

As a consequence, for Markov Chains
n
P(X1,Xs,..., X,) = [[P(Xil Xi1)
i=1
This means that the value at time ¢ depends only on the value at the preceding
time and on nothing that went on before.

1.3. Language modeling and n-grams

In statistical NLP, determining the probability P of a word sequence W =
w1, Wa, . . ., Wy, is called language modeling. Given the large number of possible word
combinations, we make a Markov assumption, that is: only the local context matters
in determining the probability of the next word. These statistical language models

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems 89

are called n-gram models. An n-gram model uses the previous n — 1 observed words
to predict the next one. An n-gram model is defined as the probability function, a
conditional probability, of the current word given n — 1 previous words. This can
be expressed with this formula:

P(Wy,Wa, ..., Wn_1,Wy) = P(W1)P(Wa|W1)P(Ws|W2) - - P(W, WP 1)
pwy) = [PWkwE)
k=1

The assumption made in n-gram models is that only the local context (the prior
n — 1 words) is relevant, and so we modify the above general probability function
as below:

P(Wo W) ~ P(Wo W20 4)

For the case when N = 2, we have a Bigram. When N = 3, we have a Trigram.
When N = 4, we have a Fourgram. Substituting N in each case, we have these
equations:

Bigram Equation:

PW) & P(Wa W)
Trigram Equation:

P(W}) ~ P(Wa|W;Z5)
Fourgram Equation:

P(WT') ~ P(W,|W;i%5)

In this paper, we will use the above equations to calculate grapheme n-grams by
substituting W,, with G,,.

1.4. Mazimum likelihood estimate (MLE)

N-gram models can be trained by counting words in a corpus and normalizing. We
take a training corpus and from this corpus take the count of a particular n-gram
and divide this count by the sum of all the n-grams that share the same first word.
For example, for a bigram, the MLE is calculated as:

C(Wy, Wa)

P(Wa|Wh) = f(Wa|Wy) = vy

This process generates the MLE (Maximum Likelihood Estimate) because all the
probability mass is given to the n-grams observed in the training corpus while a
zero probability mass is given to all other n-grams, which could be observed if the
training corpus were larger.

90 A. Memushaj & T. M. Sobh

1.5. Smoothing algorithms

Smoothing is a technique used to better estimate probabilities when there is insuffi-
cient data to estimate probabilities accurately.®* Simple n-gram models are trained
from some corpus and because any particular training corpus is finite, naturally
occurring n-grams are bound to be missing from it. Assigning a non-zero probabil-
ity to an unseen N-gram is the focus of the smoothing techniques and algorithms
and accounts for the fact that even though some N-grams have not been seen in
the training corpus, they can possibly be encountered if our training corpus were
larger or included data from a different knowledge domain.

1.5.1. Add one smoothing

A simple way of doing smoothing is to add 1 to the count of each N-gram repre-
sented in our N-dimensional matrix of observed N-grams and then multiplying by
a normalization factor N/N + V| where V is the number of grapheme types (the
alphabet size). The adjusted count would then be expressed as:”
N
d=(+1)——+
() (N+V)
In the case of a bigram, the smoothed probability function p* changes as shown
below:
Normal Bigram Probability:
C(Wy, Wa)
PWy W) = ———+—=
(W2 W) covy)

Adjusted Bigram Probability:
C(Wn71Wn) +1
C(anl) +V

where V' is the alphabet size. Add-One smoothing performs worse than other

p*(Wn|Wn—1) -

smoothing techniques unless there is a very large amount of data in the training

corpus. 34

1.5.2. Witten-Bell discounting

Smoothing can also be seen as discounting, lowering the probability mass spread
over the observed n-grams in the existing corpus and spreading that over the non-
observed n-grams. Witten-Bell discounting is based on the concept of estimating the
probability of seeing a zero-frequency n-gram. This probability can be “modeled”
by the probability of seeing an n-gram for the first time. This probability is simple
to compute since the count of “first-time” n-grams is equal to the number of n-gram
types seen in the training data. Witten-Bell discounting is then formulated as:”

T
X

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems 91

where N is the number of n-gram tokens, 7" is the number of observed n-grams and
Z is the total number of zero-count n-grams.

1.5.3. Good-Turing estimation

Good-Turing Estimation reallocates the probability mass of n-grams that occur

r + 1 times in the training data to the n-grams that occur r times:®

Ny
=(r+1)—~L

where n, is the number of n-grams seen exactly r times. This can be converted to
o

a probability for the n-gram a with r count: P(a) + %

1.5.4. Back-off

The discounting seen above can help us with the zero-count n-grams, but we can
also utilize a lower-level n-gram to compute the probability of a higher-level n-gram.
There are two methods to do just that — back-off and deleted interpolation. In both
models, an N-gram model is built based on an N —1 model. The difference between
the two is that in back-off, once an n-gram has a non-zero count then lower level
n-grams are not utilized.

For a trigram model, the back-off algorithm is expressed as:”

P(Wi|Wi—2Wi_1)
PW;|\Wi_oW;—q) if C(W,_oW; 1 W) >
= g P(W;|[W;_q) if C(W;_oW,_ 1W)—Oand C(W;_1W;) >0
ag P(W5) otherwise

where the weighing coefﬁcients a1 and as are functions of the preceding word string,
o1 is a function of W" 5 and ap is a function of W,,_; for the trigram model.

1.5.5. Interpolation

Interpolation is a method that combines bigram probabilities with unigram proba-
bilities to estimate the probability of an unseen bigram by utilizing the probability
of the unigram contained within the bigram.” The deleted interpolation algorithm
combines the probabilities of all lower order n-grams with the highest order n-gram
by attaching linear weights to all language models. The Linear Interpolation for an
n-gram model can be expressed as:

Prr(WilWi=o 1) = MP(WiWiZ 1) + - 4+ A P(W5)

n+1
where the sum of all A is equal to 1: Y \; =1

Recursively, this equation can be expressed as:

PLI(W|W n-‘,—l) (1_)‘Wj:i+1) (W|W1 n+1)+)‘w7f L PLI(W|W n+2)

92 A. Memushaj & T. M. Sobh

The X values are trained in order to maximize the likelihood of the held-out corpus
(a portion of the corpus that is separated from the training data and used to test
out the language model trained on the training data).

1.6. Entropy and perplexity

Entropy is one of the most common metrics used to evaluate n-gram models.
Entropy is the minimum number of bits it would take to encode a piece of
information.? Entropy is calculated by establishing a variable X that ranges over
words or letters and that has a probability function p(z). Entropy is then defined as:?

H(X)=-"> p(z)log, p(x)
reX
Perplexity is defined as 27 and gives us the weighted average number of choices a
variable has to make.®” Thus, if the entropy of our grapheme language model is 2,
then on average, there are 4 possible choices for the next grapheme.

1.7. Minimum edit distance

The minimum edit distance between two strings is the smallest number of changes
(insertions, deletions, substitutions) needed to convert one string into the other
where each of the above operations has a cost of 1. A more general requirement is
that each of the operations can have a different cost, i.e. insertions and deletions
would have a cost of 1 and substitution would have a cost of 2 since a substitution
is comprised of one deletion and one insertion. The minimum edit distance is calcu-
lated by utilizing dynamic programming. The general case minimum edit distance
algorithm,” where the cost of each operation is a variable, is shown below:

function MIN-EDIT-DISTANCE (target,source) returns min-distance
n «— LENGTH (target)
m «— LENGTH (source)
Create a distance matriz distance[n + 1,m + 1]
distance [0,0] < 0
for each column i from 0 to n do
for each row j from 0 to m do
distanceli, j] «— MIN (distance[i — 1, j] 4+ ins-cost)target,,
distance[i — 1, j — 1] + subst-cost(source;, target,),
distance(i, j — 1] + del-cost(source;)

2. Proposed Approach
2.1. Overview

Probabilistic language modeling is widely used in spelling correction and handwrit-
ing recognition systems among other widespread usage of such models. As men-
tioned before, probabilistic language models are built via processing written or

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems 93

recorded spoken language in order to infer structural knowledge about the lan-
guage. The most common probabilistic models are word n-gram models. Word
n-gram models suffer from data sparseness because of the uneven distribution of
lexical constructs in the text corpus used to train the model. Building even the
simplest word n-gram model, a bigram, which attempts to assign a probability to
the event where we encounter word W, after we have seen word W, _1, requires
that we attempt to assign probabilities to all the possible {W,,W,,_1} word pairs
from their frequency in the given training corpus. Even for a modest dictionary N
of 10,000 words, it would require that we see at least one event for each of the N2
possible pairs, in this case 100 million possible pairs. The possible number of word
sequences increases to N3 and N? for trigram and fourgram models respectively.
Training such models requires immense amounts of text and since even large cor-
pora such as those for the English language suffer from data sparseness, a language
model based on word n-grams for the Albanian language is even more of a challenge
since there are no available corpora for the Albanian language.

Our technique attempts to overcome this challenge by utilizing grapheme n-gram
models which can infer morphological knowledge of the language from a smaller
corpus. The intuition that led us to attempting to utilize such models is based on
the fact that graphemes are the smallest sub-word unit in a language.

Spellcheckers and handwriting recognition systems are judged on their cover-
age/recall, flagging /precision, and suggestion adequacy characteristics. Our tech-
nique attempts to improve suggestion adequacy in either a spelling correction
system or a typing system by utilizing grapheme n-gram probabilistic models. In a
spelling correction system, after a word has been flagged as misspelled, a Minimum
Edit Distance algorithm can be used to compare a given word to each word from a
dictionary and then generate a list of suggested replacement words that differ from
the original word with a minimal number of insertions, deletions, or replacements.
Simply listing these suggestions does not provide satisfactory suggestion adequacy
so we need to add additional criteria to the ranking so that a correct suggestion
from the list is always at or near the front of the list of suggestions. In an augmen-
tative typing system, suggestions can be generated while words are being typed in
order to minimize the amount of typing needed for each word.

In the sections below, we describe the steps and decisions in the process as well
as the results generated by our technique.

2.2. Obtaining and preparing the text source

The first step in building an n-gram language model is the creation and preparation
of the training corpus. A fiction novel by Fatos Kongoli was chosen as our corpus as it
is a somewhat representative example of the commonly written and spoken language
today in Albania. The text is short, containing 83,141 word tokens and 25,405 word
types. The large number of word types, as compared to English, reflects the highly
inflectional nature of Albanian. The text was in raw form with no markups or

94 A. Memushaj & T. M. Sobh

any pre-processing done. We used this text to build the dictionary as well as the
grapheme bigram, trigram, and fourgram probabilities. The text was converted to
lowercase assuming that any proper names will have a very low frequency and will
not bias our probabilities. Word tokens were assumed to be the text within white
spaces. All non-alphabetic characters were removed, leaving only words and white
spaces in the text.

2.3. Building the language model

The next step in building the language model is the generation of Maximum Likeli-
hood Estimates for our n-grams. In this paper, we have generated Maximum Like-
lihood Estimates for the Bigram, Trigram, and Fourgram models. The formula for
generating the MLE for a bigram is:
C(Wh,W2)

C(Wh)

Some of the bigram MLE values are shown in the table below:

P(Wo W) = f(W|Wy) =

Table 1. Bigram maximum likelihood estimates.

a b c d e f g

a 0.000116 0.007512 0.005125 0.020906 0.00099 0.015024 0.008269
b 0.168818 0 0 0.000253 0.098203 O 0

¢ 0.210843 0 0 0 0.189157 0 0

d 0.050644 O 0 0 0.092934 0 8.70E—05
e 0.004328 0.002255 0.005181 0.032671 6.10E—05 0.00896 0.025905
f 0.174653 0 0 0 0.084805 O 0

g 0.245828 0 0 0.00194 0.022119 0 0

The formula for generating MLE for a trigram is:

C(Wla WQ; W3)
C(Wy, Wa)

Some of the trigram MLE values are shown in the table below:

P(W3|Wy,Wy) = f(W3|Wi, W) =

Table 2. Trigram maximum likelihood estimates.

a b c d e f g
aa 0 0 0 0 0 05 0
ab 0.364341 O 0 0 0.062016 0O 0
ac 0.090909 0 0 0 0.034091 0 0
ad 0.08078 0 0 0 0.027855 0 0
ae 0 0 0 0 0 0 0
ba 0 0.065967 0 0.007496 O 0 0.002999
bb 0 0 0 0 0 0 0

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems

The formula for generating MLE for a fourgram is:

P(Wy Wy, Wy, W3) = f(W4|Wy, Wa, W3) =

C(Wla WQv W37 W4)

Some of the MLE values for the fourgram model are shown below:

Table 3. Fourgram maximum likelihood estimates.

C(Wla W27 W3)

a b ¢ d e f g h i j ok 1
aaa 0 O O O O O O O O 0 0 0
aab 0 O O O O O O O O 0 0 0
aac 0 0O O O O O O O O 0 0 0
aad O O O O O O O O O 0 0 0
aae O O O O O O O O O 0 0 0
aba 0 0 O O O O O O 0.744681 O 0.148936 0.021277
abb 0 0O O O O O O O O 0 0 0

As is clear from the generated MLE values, MLE allocates all of the probability
mass on the observed events and zero probability mass on unseen events. In building
our language model, we have not only calculated the MLE values, but we have also
applied two smoothing algorithms. The tables below show samples of values for

95

both Add-One Smoothing and Witten-Bell Discounting for the bigram, trigram,
and fourgram models.

Table 4. Bigram probabilities after add-one smoothing.

a b c d e f g
a 0.000175 0.00757 0.005183 0.020964 0.001048 0.015083 0.008328
b 0.169071 0.000253 0.000253 0.000506 0.098456 0.000253 0.000253
c 0.212048 0.001205 0.001205 0.001205 0.190361 0.001205 0.001205
d 0.050731 8.70E—05 8.70E—05 8.70E—05 0.093021 8.70E—05 0.000174
e 0.004389 0.002316 0.005242 0.032732 0.000122 0.009021 0.025966
f 0.174968 0.000315 0.000315 0.000315 0.08512 0.000315 0.000315
g 0.246023 0.000194 0.000194 0.002134 0.022313 0.000194 0.000194

Table 5. Bigram probabilities after Witten-Bell discounting.

a b c d e f g
a 0.000116 0.00751 0.005123 0.020899 0.00099 0.015019 0.008266
b 0.167607 0.000512 0.000512 0.000251 0.097499 0.000512 0.000512
c 0.203351 0.002369 0.002369 0.002369 0.182435 0.002369 0.002369
d 0.050536 0.000177 0.000177 0.000177 0.092737 0.000177 8.70E—05
e 0.004326 0.002254 0.005179 0.032659 6.10E—05 0.008957 0.025896
f 0.173206 0.000637 0.000637 0.000637 0.084102 0.000637 0.000637
g 0.244475 0.000393 0.000393 0.00193 0.021997 0.000393 0.000393

96 A. Memushaj & T. M. Sobh

Table 6. Trigram probabilities after add-one smoothing.

b

a c d e f g
aa 0.03125 0.03125 0.03125 0.03125 0.03125 0.0625 0.03125
ab 0.301887 0.006289 0.006289 0.006289 0.056604 0.006289 0.006289
ac 0.076271 0.008475 0.008475 0.008475 0.033898 0.008475 0.008475
ad 0.077121 0.002571 0.002571 0.002571 0.028278 0.002571 0.002571
ae 0.021277 0.021277 0.021277 0.021277 0.021277 0.021277 0.021277
ba 0.001435 0.064562 0.001435 0.008608 0.001435 0.001435 0.004304
bb 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
Table 7. Trigram probabilities after Witten-Bell discounting.
a b c d e f g
aa 0.025911 0.025911 0.025911 0.025911 0.025911 0.137243 0.025911
ab 0.352976 0.001418 0.001418 0.001418 0.060081 0.001418 0.001418
ac 0.086634 0.002045 0.002045 0.002045 0.032488 0.002045 0.002045
ad 0.080022 0.000521 0.000521 0.000521 0.027594 0.000521 0.000521
ae 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084 0.0084
ba 0.000282 0.065707 0.000282 0.007467 0.000282 0.000282 0.002987
bb 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
Table 8. Fourgram probabilities after add-one smoothing.
a b c d e f g
aaa 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aab 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aac 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aad 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aae 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aba 0.012987 0.012987 0.012987 0.012987 0.012987 0.012987 0.012987
abb 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
Table 9. Fourgram probabilities after Witten-Bell discounting.
a b c d e f g
aaa 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aab 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aac 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aad 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aae 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333
aba 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036 0.00036
abb 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333 0.033333

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems 97

After the MLE, Add-One and Witten-Bell language models were created, and
we calculated the entropy for the Bigram, Trigram, and Fourgram models as below:

Bigram MLE Entropy 3.01867990768389
Bigram Add-One Entropy 3.15301080452977
Bigram Witten-Bell Entropy 3.18008073400134

Trigram MLE Entropy 2.01839172229128
Trigram Add-One Entropy 3.97363007007406
Trigram Witten-Bell Entropy 3.5851641154334

Fourgram MLE Entropy 1.43200113013433
Fourgram Add-One Entropy 4.77572387001751
Fourgram Witten-Bell Entropy 4.42011483996596

We notice that the entropy of any of our smoothed n-gram models is higher
than its MLE entropy. The smoothed models spread the probability mass from
the observed events onto unobserved events. While this is required in word n-gram
models since it is possible that any sequence of n words could be observed in a text,
it is a bad choice with grapheme n-grams as it is morphologically impossible for
many grapheme sequences to be observed in a language. Thus, the smoothed models
allocate probability mass on impossible events. While it can be argued that many
words are not in the corpus, words in a language are formed of syllables which follow
finite construction rules.® The entropy for our grapheme fourgram MLE model for
the Albanian language is 1.43. The English language entropy has been estimated to
be 1.3 by Shannon? and 1.75 by Brown et al.! We will use the MLE model in our
spellchecking system.

2.4. Minimum edit distance implementation

Minimum Edit Distance calculates the difference in characters between two strings
when a character insertion, removal, or replacement is each given a weight of one.
Upon encountering a misspelled word during a text scan, we can calculate the
minimum edit distance for the misspelled word vs all the words in the dictionary.
If the dictionary is already loaded in the main memory (in a system with adequate
memory), this scan does not tax the computer and is quick to find the minimum edit
distance in each comparison. The minimum edit distance can take any values for
the given dictionary, but we will only accept suggestions with a maximum distance
of three since words that differ by more than 3 characters are quite different and
misspelling is probably not the reason for the input word not being in the dictionary.
During our work on the system, it became apparent that the minimum edit distance
is useful only when it is smaller or equal than 1/3 of the length of the words being
compared. If we have a word with 3 characters, and a total of 1,000 words in
the dictionary with a length of 3, then the input word will have a minimum edit

98 A. Memushaj & T. M. Sobh

distance of 3 with all of these words. Thus, our suggestion list would contain at least
all the 1,000 3-character words + all the 2-character words, etc. So it is apparent
that the minimum edit distance needs to be used carefully in determining possible
suggestions for a misspelled word. We take this into account in our system and,
for all words with a length smaller or equal to 3, we allow only suggestions with a
minimum edit distance of 1. For all words with length between 4 and 7, we allow
only suggestions with a minimum edit distance of 1 or 2. For words having more
than 7 characters, we will allow a minimum edit distance of up to 3. Given the
relative infrequency of words with more than 10 letters, we will not consider the
case when the minimum edit distance of two words is higher than 3.

2.5. Ranking suggestions created by minimum edit distance

Once we create a list of all the suggestions, grouped according to the minimum
distance, we will most probably have more than one suggestion for each group of
suggestions. If we assume that all the suggestions with a smaller minimum edit
distance are better suggestions, then that is one criteria of ranking the suggestions.
But as we said above, if more than one suggestion exists for each group then we
need to rank those suggestions as well. We now have to use this data to create a
scoring system to rank our suggestions. For suggestions that have a minimum edit
distance of 1 with the original word, we find the position of the differing character,
if both the word and the suggestion have the same length. For suggestions that
have a minimum edit distance of 2 with the original word, we find the positions of
the differing characters, if both the word and the suggestion have the same length.
When the length of the misspelled word and the suggestion being scored is the same,
it means that we have had character replacement. If the minimum edit distance is
1, then we have one character replacement. If the minimum edit distance is 2, then
we have 2 characters that have been replaced and so on for a minimum edit distance
of 3. When the replaced character is in the middle of the word, it is neither the first
nor the last character in the word; we analyze the trigram formed by the character
in question and the surrounding 2 characters, one on each side.

e perdor
e pérdor

Thus, if the word we analyze is ‘perdor’ and the suggestion is ‘pérdor’, we see
that ‘e’ has been replaced by ‘¢’. We analyze the trigram {p, &, r} and find the
probability /occurrence count assigned to it when the corpus is processed. When the
minimum edit distance between the words is 2, we will have to analyze 2 trigrams
for each suggestion.

e perdor
® pérgor
e mendor

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems 99

If the misspelled word is ‘perdor’ and a suggestion of minimum edit distance 2
is ‘pérgor’, the differing characters are ‘é’ at position {1} and ‘¢’ at position {3}
so we will have to analyze the trigrams {p, &, r} and {r, ¢, o}. Another suggestion
of minimum edit distance 2 is the word ‘mendor’ and in this case the differing
characters are ‘m’ at position {0} and ‘n’ at position {2}.

2.6. Working with special cases

While we can easily find a trigram where the differing character is in the middle, for
‘n’—{e, n, d} we won’t be able to do so for the first differing character as it is the first
character in the word. We encounter the same problem when the differing character
is the last in the word. In both these cases, we could use bigram probabilities. For
our example, we would calculate the bigram probability {m, e}. We observe though
that this probability is orders of magnitude larger than any trigram probabilities
we have calculated and can skewer our results. We need to modify this probability
so that it can be included in our trigram probability distribution. For this reason,
I have included two meta-characters, *-to denote the beginning of the word and
$ - to denote the end of the word. In this case, the bigram {m, ¢} would become
the trigram {" , m, e}. We now have to modify our corpus processing program to
calculate the probabilities for the trigrams {" , y, z} and {x, y, $}.

2.7. Comparing words with different lengths

Comparing words with different lengths is more complicated than comparing words
with the same length. We need to decide how we will compare the two words in a
way that fits our overall approach and that probabilities assigned reflect the correct
probability mass.

2.7.1. Comparing words with a minimum edit distance of 1

When the words being compared (which have different lengths) have a minimum
edit distance of 1, then we have two cases to consider:

(1) When the suggested word is shorter than the misspelled word

e maskinash (misspelled word)
e ma kinash (suggestion)

The differing character here is ‘s’ at position 2 which has been removed from the
misspelled word to produce the suggestion. We are assigning the probability of the
trigram {a, k, i} to the suggestion, thus assigning the probability of the trigram
{c, x, ¢} where x is the character from the suggestion, found at the same position
as the “extra” character in the misspelled word.

100 A. Memushaj & T. M. Sobh
(2) When the suggested word is longer than the misspelled word

e p_rdor (misspelled word)
e pérdor (suggestion)

The differing character here is € which is inserted at position 1 in the misspelled
word, between p and r, to produce the suggestion. At this point, we will then find
the trigram probability for {p, &, r} and assign it to the suggested word.

2.7.2. Comparing words with a minimum edit distance of 2

There are 4 cases to be considered when the words being compared have different
lengths and minimum edit distance of 2:

(1) When the suggested word is 2 characters longer than the misspelled word.
In this case the misspelled word is simply missing two characters (if it were to be a
misspelled version of the suggestion).

At this point, we somewhat repeat the arguments from the analysis done in the
comparison for words with minimum edit distance of 1. We locate the two additional
characters x1 and x2 in the suggested word and then calculate the probability of
the trigrams {c, x1, c} and {c, x2, ¢} where the c-s are the surrounding characters
(whether c is an alphabetical character or one of the meta characters introduced in
our solution makes no difference).

e m_sonj_tore (misspelled word)
e meésonjétore (suggestion)

In this case, we need the trigram probabilities for {m, &, s} and {j, &, t} so that we
can assign a score/probability to the word.

(2) When the suggested word is 2 characters shorter than the misspelled word.
In this case, the misspelled word is two characters longer than the suggested words,
meaning that the misspelled word was just the wrongly-spelled suggestion.

e borébarédha (misspelled word)
e bor_bar_dha (suggestion)

In this case, we locate the two additional characters at positions pl and p2 in the
misspelled word, then we calculate the probabilities (on the trigrams formed in
the suggested word {c, x(pl), ¢} and {c, x(p2), ¢} where ¢ again represents the
surrounding characters in the word and x is assumed to be a function that returns
the character at position p in a given string. For this example, the trigrams would
be: {r, b, a} and {r, d, h} since when the first ‘¢’ is removed, ‘b’ takes its place,
and when the second ‘€’ is removed, ‘d’ takes its place.

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems 101

(3) When the suggested word is 1 character longer than the misspelled word.

When the length of the suggested word is only one character longer and the
minimum edit distance is 2, then we have an additional character and a replaced
character.

e mund_saj (misspelled word)
e mundésoj (suggestion)

In this example, we will calculate probabilities for {d, &, s} (to account for the added
character ‘é’) and {s, o, j} (to account for the replacement of ‘a’ with ‘0’).

(4) When the suggested word is 1 character shorter than the misspelled word.

e trashagimtori (misspelled word)
e trash_gimtari (suggestion)

In this example, the suggested word has one less character, the second ‘a’ from
the misspelled word has been dropped, and ‘o’ in the misspelled word has been
replaced with ‘a’ in the suggested word. The probability assigned to this word will
be calculated from the trigram probabilities {h, g, i} and {t, o, r}.

2.7.3. Comparing words with a minimum edit distance of 3

There are 6 cases to be considered when the words being compared have different
lengths and minimum edit distance of 3:

(1) When the suggested word is 3 characters longer than the misspelled word.

We locate the three additional characters x1, x2, and x3 in the suggested word and
then calculate the probability of the trigrams {c, x1, ¢}, {c, x2, ¢}, and {c, x3, ¢}
where the c-s are the surrounding characters.

e inxh.n_er_ (misspelled word)
e inxhiniere (suggestion)

The probability assigned to this suggestion is calculated from the probabilities of
these three trigrams: {h, i, n}, {n, i, e}, and {r, e, $}
(2) When the suggested word is 2 characters longer than the misspelled word.

When the length of the suggested word is only 2 characters longer and the minimum
edit distance is 3, then we have 2 additional characters and a replaced character.

e manicion (misspelled word)
e municionet (suggestion)

We can see that the second character has been replaced with a ‘v’ and two
characters have been inserted at the end of the word. In this example, the suggestion
will be assigned a probability by getting these 3 trigram probabilities: {m, u, n},
{n, e, t}, and {e, t, $}

102 A. Memushaj & T. M. Sobh

(3) When the suggested word is 1 character longer than the misspelled word.

When the length of the suggested word is only 1 character longer and the minimum
edit distance is 3, then we have 1 additional character and 2 replaced characters.

e autabusi_ (misspelled word)
e autobuzit (suggestion)

In this example, we can see that the misspelled word is one character shorter than
the suggested word although it has a minimum edit distance of 3 with it. We have
two characters that have been replaced and one character being added. The proba-
bility assigned to the shown suggestion would be calculated by the probabilities of
these 3 trigrams: {t, o, b}, {u, z, i}, {i, t, $}.

(4) When the suggested word is 3 characters shorter than the misspelled word.

In this case, we locate the three additional characters at positions pl, p2, and p3 in
the misspelled word, then we calculate the probabilities {c, x(pl), c}, {c, x(p2), c},
and {c, x(p3), ¢} where ¢ again represents the surrounding characters in the word
and x(p) is assumed to be a function that returns the character at position p in a
given string (we are only dealing with strings comprised of only one word plus the
word-start and word-end characters).

(5) When the suggested word is 2 characters shorter than the misspelled word.

When the length of the misspelled word is 2 characters longer and the minimum
edit distance is 3, then we dropped only 1 character and replaced only 1 character.

e kalkulim (misspelled word)
e kal_u_am (suggestion)

The example above shows this case clearly. Two characters have been dropped
(second ‘k’ and the second ‘I’) and we have a character replacement. The probability
assigned to this suggestion will be calculated from these 3 trigram probabilities:
{1, u, a}, {u, a, m}, and {a, m, $}.

(6) When the suggested word is 1 character shorter than the misspelled word.

When the length of the suggested word is only one character shorter and the min-
imum edit distance is 3, then we have dropped one character and replaced two
characters.

e autabusi (misspelled word)
e autobuz_ (suggestion)

We can see that the suggested word is one character shorter than the misspelled
word, but the minimum edit distance between the two is 3. We have two character
replacements and the deletion of a character. The suggested word will then be
assigned a probability by getting these two trigram probabilities: {t, o, b} and
{u, z, $}. Given that the dropped character is the last one, it has then removed the
third trigram possibility which was to be expected for a minimum edit distance of 3.

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems 103

2.8. Combining probabilities and minimum edit distance

We now have two methods to rank (score) the list of generated results. One way is
through the minimum edit distance results, where suggestions with a lower mini-
mum edit distance are ranked higher. But, what if we have more than one suggestion
with the same minimum edit distance value? In fact, this is the case more often than
not. We could sort the suggestions alphabetically, but we have no other way of rank-
ing suggestions. To overcome the lack of an objective ranking method, we augment
the minimum edit distance results with the combined trigram probabilities of the
replaced, inserted, or removed characters. This is the second method of ranking the
suggestions. As the basic building block of a word, graphemes are combined and
grouped only in certain ways, to each of which we can assign a probability.

As shown above, depending on the minimum edit distance and the length of
the input word as compared to each suggestion, we can assign a value to each of
these suggestions to be used as a ranking criterion. This value will be used to judge
whether a word is more likely (based on observed usage of graphemes in the corpus)
to be the replacement for the misspelled word. Each suggestion is now ranked by two
criterions — minimum edit distance and the probability assigned by our algorithm.
One step needs further research: whether the assigned probability is able to cause
a suggestion with a higher minimum edit distance value than another suggestion to
be ranked as a better suggestion if the probability assigned to it is higher as well.

2.9. Augmentative typing systems

Another area where a grapheme language model can be very helpful is on aug-
menting typing systems such as the ubiquitous cell phones and their useful short
messaging capability. When typing an SMS message on a restricted pad such as
a phone pad, with only 9 buttons which represent all letters of the alphabet, the
selection between letters associated with the same number (from 1 to 9) are done
via multiple taps for each letter. For example, typing the word “punoj” requires
that we tap the 7 button once to produce “p”, then tap the 8 button twice to pro-
duce “u”, button 6 twice to produce “n”, button 6 three times to produce “o” and
finally button 5 once to produce “j”. For the word “punoj”, the tapping sequence is
thus “788666665”. Our augmentative system would reduce the typing of this word
in a phone pad via rearranging the order of letters (so that the selection of a letter
via multiple taps does not depend on an arbitrary order, but is arranged dynami-
cally according to the language model we have built above) and produce a tapping
sequence of “78665” due to these bigram probabilities:

(ulp) = 0.03322 P(t|p) = 0.024478 P(

(nju) =0.145076 P(m|u) = 0.040785 P(olu) =0
P(ojn) =0.011946 P(mn) =0 P(nn) =0

P(jlo) = 0.081279 P(klo) = 0.035342 P(ljo) = 0.046758

v|p) = 0.000546

[=]

104 A. Memushaj €& T. M. Sobh

3. Results

Input word with a length of 3
The first table shows the list of suggestions as it is generated by the minimum edit
distance algorithm.

Input word/Suggestions m.e.d Probability assigned

due

de 1 0.000250509739755261
dhe 1 0.00608199596013407
dje 1 0.000764213256721747
dua 1 0.00130011383923617
duk 1 0.00403352391099611
duke 1 0.000853001518913485

The second table shows the list of suggestions after the suggestions have been
ranked by the assigned probabilities.

Input word/Suggestions m.e.d Probability assigned

due

dhe 1 0.00608199596013407
duk 1 0.00403352391099611
dua 1 0.00130011383923617
duke 1 0.000853001518913485
dje 1 0.000764213256721747
de 1 0.000250509739755261

m.e.d (due, dhe) = 1 and both strings have the same length: there is a character
substitution (u replaced by h) and P{d, h, e} = 0.00608199596013407

m.e.d (due, duk) = 1 and both strings have the same length: there is a character
substitution (e replaced by k) and P(u, k, $) = 0.00403352391099611

m.e.d (due, dua) = 1 and both strings have the same length: there is a character
substitution (e replaced by a) and P{u, a, $} = 0.00130011383923617

m.e.d (due, duke) = 1 but the suggestion is one character longer: there is character
addition (du{k}e) and P {u, k, e} = 0.000853001518913485

m.e.d (due, de) = 1 but the suggestion is one character shorter: there is a character
removal. The ‘v’ has been dropped. P{d, e, $) = 0.000250509739755261

Input word with a length of 5
The first table shows the list of suggestions as it is generated by the minimum edit
distance algorithm.

Input word/Suggestions m.e.d Probability assigned

eshte

ishte 1 0.00262876676274825
geshte 1 0.00103374905266095
ashtu 6.1900429179395E—07
deshe 1.01505240811767E— 06
ecte 1.00553003865164E—11

(Continued)

Using Grapheme n-Grams in Spelling Correction and Augmentative Typing Systems 105

(Continued)
Input word/Suggestions m.e.d Probability assigned
eshte
edhe 1.31768678385065E— 06
elite 1.45872242707193E—07
ese 2.07255829446721E— 06
éshté 2.86260324583581E— 06
ethe 8.32679425007423E— 08
heshta 1.80167855735485E— 06
heshti 1.26515789463149E— 06
heshtje 1.64470526302094E— 06
ishe 6.91041469292992E— 06
kashte 1.36219154336138E—07
kishte 6.63794621835648E— 06
kushte 1.35340321082356E—06
reshti 9.77375197569394E—07
shteg 6.78642680598394E— 05
shtet 6.78642680598394E— 05
shti 1.29447915055858 E— 05
veshje 2.8998179125663E— 06
vishte 2.66063248227224E—07
yshti 1.08597244174377E—08

The second table shows the list of suggestions after the suggestions have been ranked
by the assigned probabilities.

Input word/Suggestions m.e.d Probability assigned

eshte

ishte 1 0.00262876676274825
geshte 1 0.00103374905266095
shtet 2 6.78642680598394E— 05
shteg 2 6.78642680598394E— 05
shti 2 1.29447915055858 E— 05
ishe 2 6.91041469292992E— 06
kishte 2 6.63794621835648E— 06
veshje 2 2.8998179125663E— 06
éshté 2 2.86260324583581E— 06
ese 2 2.07255829446721E— 06
heshta 2 1.80167855735485E— 06
heshtje 2 1.64470526302094E— 06
kushte 2 1.35340321082356E— 06
edhe 2 1.31768678385065E— 06
heshti 2 1.26515789463149E— 06
deshe 2 1.01505240811767E—06
reshti 2 9.77375197569394E—07
ashtu 2 6.1900429179395E—07
vishte 2 2.66063248227224E—07
elite 2 1.45872242707193E—07
kashte 2 1.36219154336138E—07
ethe 2 8.32679425007423E—08
yshti 2 1.08597244174377E—08

106 A. Memushaj & T. M. Sobh

A web-based system based on the above approach was developed, allowing sev-
eral users to write text as they normally would and then spell-check the paragraph
with our system. For each word that was not encountered in the dictionary, the
system would generate a list of suggestions, ranked according to the probability
score system as above. Every time should a user select one of the suggestions, the
suggestion position in the list was recorded in a database.

4. Conclusion

The MLE grapheme n-gram model is preferable to the smoothed grapheme n-gram
models since the latter allocate probability mass to morphologically impossible
grapheme n-gram sequences. MLE grapheme models have thus a lower entropy
and higher accuracy for grapheme sequence prediction. We chose to implement the
MLE trigram model for augmenting our minimum edit distance results and a simple
typing system based on the ubiquitous phone pad.

The suggestion accuracy rate was better overall when the minimum edit distance
results were augmented with the trigram probabilities, but they were not as good
as expected. In the meantime, a larger corpus of the language would provide for
more accurate grapheme n-gram probabilities.

An augmented typing system based on grapheme n-gram language models on
the other hand, is largely an effective system which is capable of shortening the
input sequence in a phone pad, on average, by 30%.

References

1. P. F. Brown, V. J. Dell Pietra, R. L. Mercer, S. A. Della Pietra and J. C. Lai, An
estimate of an upper bound for the entropy of English, Computational Linguistics
18(1) (March 1992) 31-40.

2. E. Charniak, Statistical language learning, Language, Speech, and Communication
(MIT Press, Cambridge, MA, 1993).

3. S. F. Chen, Building probabilistic models for natural language, PhD Thesis, Harvard
University (1996).

4. S. F. Chen and J. Goodman, An empirical study of smoothing techniques for language
modeling, Harvard University Technical Report TR-10-98, MA 1998.

5. R. Jacobson and M. Halle, Fundamentals of Language, Walter de Gruyter (Amsterdam,
2002).

6. F. Jelinek, Statistical Methods for Speech Recognition (The MIT Press, Cambridge, MA
1998).

7. D. S. Jurafsky and J. H. Marting, Speech and Language Processing (Prentice Hall,
Upper Saddle River, NJ, 2000).

8. C. D. Manning and H. Schiitze, Foundations of Statistical Language Processing (The
MIT Press, Cambridge, MA 2003).

9. C. E. Shannon, Prediction and entropy of printed English, The Bell System Technical
Journal 30 (January 1951) 50-64.

