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Abstract: Sparse-matrix solution is a dominant
part of execution time in simulating VLST circuits
by a detailed simulation program such as SPICE.
The paper develops a parallel-block partitionable
sparse-matrix-solution algorithm which exploits
sparsity al the matrix block level as well as within
a nonzero block. An efficient mapping scheme to
assign different matrix blocks to processors is
developed which maximises concurrency and
minimises communication between processors,
Associated reordering and efficient sparse storage
schemes are also developed. Implementation ol
this parallel algorithm is carricd out on a
transputer processor array which plugs into a PC
bus. The sparse matrix solver is tested on
matrices generated from a transistor-level
expansion of ISCAS-85 benchmark logic circuits.
Good acceleration is obtained for all benchmark
matrices up to the number of transpulers
available.

1  Introduction

The design of modern high-speed analogue and digital
VLSI systems involves extensive circuit-level simula-
tions, A circuit simulator allows a design to be tested
thoroughly and its timing behaviour analysed in detail
before commilting it to silicon. SPICE |1] is one such
general-purpose circmil simulation program which s
widely used. It is capable of doing nonlinear DC non-
lincar transient and linear AC analyses. Note that even
though a circuit design may be completely digital, cir-
cuit simulations are important in analysing critical
delays in the system. Further, as the clock rate ol dig-
ital designs is increasing, the digital circuitry is behay-
ing more like an analogue circuit whose operation can
only be tesied by a detailed circuit-simulation program
such as SPICE.

Because a circuit-simulation program provides very
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good detail in simulation of circuils, it consumes high
amounts of CPU time in simulating large circuits [O(n*)
for a circuit with n nodes]. Hence simulations become
too time consuming for circuits with more than a few
thousand transistors. The transistor counl in newer
VLSI processors is already in the millions and rapidly
increasing every year, The execution time of circuit
simulation can be improved by exploiting the parallel-
ism in the CPU time-intensive parts of the simulation
program.

Circuil simulation involves two numerically intensive
steps. The lirst step, known as the LOAD phase, evalu-
ates the circuit models and assembles the matrix after a
nodal analysis of the circuit. The second step, known
as the SOLVL phase, solves the resulting sparse-matrix
equation o obtain the unknown nodal voltages. These
two steps are repeated many times during a transient
analysis as the simulation lime advanees in small incre-
ments. The LOAD phase has been found to be rela-
tively easily ‘parallelisable’. On the other hand. the
SOLVE phase involves a sparse-matrix solution whose
highly sparse, unsymmetric and unstructured nature
makes parallelisation very difficult [2-4]. This paper
focuses only on the parallelisation of the SOLVE
phase.

There are two approaches followed in circuit simula-
tion known as the ‘direct’ and ‘relaxation’ methods.
Although the relaxation method, which is based on the
Gauss-Seidel iterative-matrix-solution technique. often
converges faster to a solution compared with the direct
approach (and also has better parallelism), it has prob-
lems in simulating bipolar and close feedback MOS cir-
cuits [3]. For this reason, more popular simulators such
as SPICE, ASTAP, SABER, MISIM etc. use the direct
method which provides accurate simulation for all dif-
lerent kinds of circuits.

Quite a few attempts have been made at parallelising
circuit simulation in the last decade [2-11] varying from
a Mnc-grained approach on systolic arrays [10] (o
coarse-grained approaches on a network ol worksta-
tions [11]. Of these, most success has been reported in a
theoretical study on systolic arrays [10], while the
coarse-grained approach implemented on a network of
workstations using PVM did not produce any aceclera-
tion |11]. Implementations on general-purpose parallel
machines have reported some success [2-4, 6-8]. How-
ever, the high cost of general purpose parallel comput-
ers 1s causing them to fall out of favour in recent years,
Because of cost considerations and because of the fact
that a fine-grain approach to parallel-circuit simulation
has indicated the highest potential for acceleration, an
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implementation of circuil simulation on a low-cost
array of transputer processors wis pursued.

2  Parallel SOLVE for direct circuit simulation

There are four basic steps in & circuit-simulation pro-
gram such as SPICE [1]. The first step is the nodal-
equation formulation for a given circuit. If there are
nonlinear elements in the circuit, the node equations
resull in a system of ordinary differential equations.
These differential equations are then converted 1o i
system of nonlinear equations by approximating the
derivatives with backward differencing. In the third
step, the Newton-Raphson technique is applied to con-
veri the nonlinear equations to a linear form. The
matrix equation generated from this is then solved
repedtedly (in the SOLVE phase) for the unknown
nodal voltages for each time siep in the simulation. The
zero-nonzero structure of the sparse matrix for a given
circuil iy enlirely dependent on how the circuit elements
are interconnected,

The SOLVE phase has a sparse matrix equation of
the form A x = b, where A is a0 n % n matrix and x and
b are nn x | vectors. Although Gaussian elimination can
be used to solve this matrix equation, it is not efficient
in cases where the coefficient matrix A stays the same
but the b vector changes many times. A variation of the
Gaussian elimination is LU decomposition [also time
complexity O(n') for an n x n matrix| in which the A
matrix is transformed into a product of lower and
upper triangular matrices. After A has been decom-
posed into its L and U factors, two triangular equa-
tons Ly = b and Ux = y are solved to find the
unknown xs. The soluuon of a triangular equation has
a time complexity of O(r).

To achieve good acceleration in the parallelisation of
the SOLVE phase, it is necessary to partition the
matrix onto different processors such that it results in
concurrent execution with good load balance as well as
reduced communication bhetween processors. In the
‘past, the partitioning has been carried out indirectly
using the node-tearing approach [12], and has resulted
in relatively low accelerations due 1o the load-baluncing
problem [2], This occurs when the subcircuits are not of
identical size, causing waiting on completion of the
solution of the largest subcircuit. In this work, a direct
partitioning of the matrix into equal size blocks for
mapping on to available processors is [ollowed. Opti-
mal purtitioned algorithms for solving a dense linear
system of equations have been developed previously
[13, 14]. However, the unstructured and highly sparse
matrices encountered in circuit simulation make this a
difficult problem. A sparse-parallel-dense-matrix-LU-
decomposition algorithm will be developed based on a
modification of the parallel-dense-matrix scheme of
[13],

In the parallel-LU-decomposition scheme ol [13], a
given matrix A = (a,) is partitioned into & submatrices
each of size m x m (each submatrix is referred 1o as a
block). The parallel algorithm first computes the LU
decomposition in block Ay, using a serial algorithm.
Then after computation of Ly, and Uyg', in step 2,
all remaining blocks in the first row and first column
can be computed in parallel for their U and L compu-
tations, respectively. Similarly step 3 computes the LU
decomposition in the disgonal block 4, followed by
computation of L, "', U, "\ Step 4 concurrently com-
putes the U factors in row |, and L factors in column
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I. The computation proceeds in a similar manner until
the 7.U decomposition is performed in the last diagonal
block in step 2k-1. The pseudocode for the dense-
matrix-parfitioned- L U-decomposition algorithm is as
fallows:
Paralle]  partitioned-dense-matrix-L U-decomposition
algorithm
PARALLEL PARTITIONED_DENSE _LUD(A)
forg=0to K1 /* K = number ol blocks in a
row/column */
il (g = 0) then compute A_prime(A,4.q9)
Decompose A, into L, .U, ,
il (¢ < (K=1)) then
Cnmpuu: inverse matrices L,, ' and
Uiy
/81 and S2 are computed i parallel®/
Si: for ull p = (gi1) to K~ do
if (g > 0) then compule_
A_prime(A4.p,9)
compute L, . = A, . Ug ™!
endfor
S2: forall p = (¢+1) to K 1 do
il (¢ = 0) then compute_
A pnime(A,q.p)
compute U, , = L, ' . A,,
endlor

endfor
end PARALLEL PARTITIONED DENSE LUD

compute A prime(A,p,9)
A" =0; r = min(p.q)
for s =0 to r-1 do
A=A+L,,.U
Apg = Apg = A’
end compute A_prime

As an example, Ly; 15 computed by first determining
the A-prime (A4 3)" 35,

(Ag3) = Ay - (L‘;P Ups + Lyy Ups + Lys Usy). Then,
Lys = (Ay3)(Uyy) .
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j The number of floating point arithmetic operations
required by the above parallel-L U-decomposition algo-
rithm is very close to that of the conventional serial
algorithm. The count for the parallel algorithm
decreases slightly as the block size is made smaller,
Overall, it is within 10% of the count required in the
conventional serial algorithm. For example, the
number of exact normalised floating-point operations
in the LU decomposition of a 500 x 500 matrix is 125
124 250 for the conventional serial algorithm, and 132
646 330 for the parallel algorithm with a block size of
20 x 20. The normalised count assumes a weight of 2
for floating-point multiplication and 4 for division.

2.1 Fartitioned-sparse-matrix LU
decomposition

The partitioning method to perform LU decomposition
on 4 transputer array is illustrated in Fig. 1. The parti-
tioned matrix-block-lo-processor assignment has been
chosen such as to maximise concurrency and minimise
communication between processors. The given malrix
A = (a;)) is partitioned into equal size blocks of order
mxom.

After a dingonal block A, has been decomposed into
its L,,; and U, factors by the root transputer node
(labelled T1 in Fig. 1), it communicates the (L)' to
all the processors assigned to blocks in the ith row, and
(U, to the processors assigned to the ith column
blocks. These processors then perform the L and U
computations concurrently, as indicated by the parallel
algorithm of Section 2.

Owing to the low connectivity of each node in a large
circuil, the matrices generated in circuit simulation tend
to be highly sparse (> 99% zeros). Thus the dense par-
allel algorithm needs to be modified to take advantage
of the sparsily in the problem. A sparse-matrix solution
has been developed in [10] for use on systolic arrays
which exploits the sparsity at the block level only, i.e. it
skips computations related 10 zero blocks. It was
shown in [10] that, if the block size is kept small (2 x
2), excellent accelerations can be obtained by using
multiple 2 x 2 systolic arruy modules. However, the
results deteriorate rapidly as the block size increases
above 2 x 2 because of decrease in block-level sparsity.

In this paper, a two-level sparse algorithm is devel-
oped which exploits sparsity at the block level as well
as within a block. Note that a block size of 1 x |
results in maximum concurrency but also maximum
communication belween processors, At the other
extreme. if block size is n x n, then the problem is
reduced 1o 4 sequential execution. As the block size
increases gradually above 2 x 2, the concurrency and
the communication between processors decrease, the
block-level sparsity decreases, but the sparsity within
each block increases. Hence an optimum block size is a
function of the sparsity in the problem, speed of cach
processor, and the communication between processors,
Thus systolic arrays in which processors provide data
transfer of one word in each clock cycle on all their
links would run a matrix solver efficiently with a small
block size so as to maximise concurrency. However,
slower communication environments with high latency
such as a network ol workstations connected by Ether-
net would require a much larger block size. Transputer
arrays fall in between the above two extremes, requir-
ing a medium granularity in LU decomposition for its
elficient parallel execution.
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To exploit the sparsity at the block level, most of the
fill-in (zero blocks which get changed) can be decided
according to the position of 4 zero block in the original
matrix. The sparse algorithm developed here uses a 2-D
one-bit array called 4= to store the information about
zero-nonzero blocks. If' A= is checked, I and U compu-
tations for blocks which do not cause fill-in, can be
skipped. If a fill-in occurs at block,,, but A, is origi-
nally zero, then Az, is set to | during the computations
for this block.

To exploit the sparsity within a nonzero block,
sparse routines can be developed to save on computa-
tions returning zero results. The implementation of the
sparse routines requires a fast access to the nexl
nonzero elements. This is achieved by using a com-
pressed-sparse-storage scheme {compressed sparse-row
form (CSR) and compressed sparse-column form
(CSC) [15, 16, 19]} within the blocks. The compressed-
sparse-row (CSR) format uses three arrays 1o store an
n % n sparsc maltrix with ¢ nonzero entries:

(i) A ¢ » 1 X array contains the nonzero elements in
cach row.

(1) g x 1 array X.J that stores the column numbers of
each nonzero element.

(iii) A n x | array X1, the ith entry in XI points to
the first entry of the ith row in X and XJ.

.
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Fig.2 (SR siorage of ab =6 Aparse muatrix

Fig. 2 shows an example for the CSR storage scheme.
The compressed-sparse-column (CSC) form is related
to CSR form such thul the roles of rows and columns
are reversed.

Since the time-intensive computations in the parallel-
LU-decomposition algorithm are block-matrix multipli-
cation, and LU decomposition in the diagonal blocks,
sparse routines for these operations are implemented
[sparse_matrix_multiply( ) and sparse Iu_gauss( )]. The
sparse-matrix-multiply( ) routine stores the first matrix
block to be multiplied in CSR form so that the next
nonzero in & row can quickly be accessed. Similarly,
the second block to be multiplied is stored in CSC
form which provides a quick access to the nonzeros in
each column of the matrix. The sparse lu_gauss( ) rou-
tine speeds up the serial LU decomposition needed in
the diagonal block by skipping the zero subtractions in
row updates. This is achieved by storing the upper tri-
angular part of the diagonal block in CSR form to help
skip computations due to a zero operand. The block is
also kept in dense-storage form so thal a quick access
to the actual nonzero entries can be made. The pseu-
docode for the sparse_lu_gauss( ) routine is as follows:

void sparse lu_gauss(B,.X. X1, X)) / B[][] is the diag-
onal block

{ /X, X1, XJ contain the CSR
storage form for B[][]
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for (i = 11 i < BLOCK_SIZE. i++)
I
for (j =0y ) < 1; j++)
i (BlG] = 0y
rownupdate CSR(M. X1, X1,1,)); /1 sparse row
updare in row i to
| Il zero out position Bl
(Ganssian ¢limination)
void rowupdate CSR(B.XLXLij) /7 fast row updute
to zero out B(i)) by
[ I exploiting sparsity. B has a copy of it stored in
CSR form for this purpose
Blilli] = BEIGYBEIG] / mudtiplier in row update
first_nonzero_pos = Xl|ji last nonzero _pos =
XI[j+1] # # nonzeros in row |
for (k = first_nonzero_pos -+1; k < last_nonzero
pos; k++)

BIil[XJ(k]] = BLIXI{K] — B[] * BHIXJIK]

|

Note that the conversions needed from dense-storage
form to CSR or CSC form for un m % m block are
O(m?), whereas dcmc-mdlm multiplication or LU
decomposition require O(m®) operations. Thus the con-
version overhead is minor compared with the execu-
lion-time savings from exploiting sparsity, Further,
only one conversion is required for operating on an
entire row or column of blocks, e.g. (L, )" is converted
only once to CSR form and transmitted to all the cor-
responding row blocks for their U computations. The
two-level-parallel-sparse-LU decomposition 15 as [ol-
lows;

_ - <purullel-LU-de ition algorithm
read input_mateix( )/ Read and store matrix in
sparse form
)} Store block level sparsity
mnfo in 2-D array Az

Fori=01t0 K1 i K is the tetal number of
blocks in a row/col,
Fori=010 K-1
if(i==J H Compute L and U faciors for

diagonul blocks
AU to CSR(A, . X.XLXN) /I change upper
{riung. 1o CSR
I onot the first
yow or column
compute A _primel 4, Az,5,41)
sparse_lu gauss(A, . X.XLXS) I/ sparse LU
decomp.in A
il (i < K-1) /] Not the last diagonal block
L_invert(A,; L) i Iwmpurc
i
vl cl'umpuu'

irg=0)

U _invert(A4, ;.

]
L to CSR(L',  X.XIL.XJ)

I change to CSR
U to CSC(U ! Y. YLY))

/I change tn CSC

ir( =i /I U computations in upper fri=
angular hlocks
i = 0) | (=) /N not the first row or
colwmn

compute A _prime{A. Az 41,/)

2

il (A=, = 1) /[ Ay is nonzero block
dense_to_CSC(4,,,C.CLCT)
sparse_matrix_multiply(4,,

X XIXJ.C.CIL,C)
else Il L computations in lower iri-
angulur bloeks

W =0 =00/ not the first row or

column
compute_A_prime(A, 4z, /,41)
if (Az;, = 1)/ A, 15 nonzero block
dense to CSR(A, R.RI.RJ)
sparse_matrix_multiply(1,,
R.RILRJY.YLY))
The source code and detailed explanation for the dif-
ferent routines used in the above program can be lfound
in [16]. An example is presented in Fig. 3 1o clarily the

steps involved,
HBEE
. [EEGEE
|z
EER

l'_lg.3 Spurse oty partinonod o 4 x4 blocks

Fig. 3 shows a sparse matrix partitioned in 4 x 4
blocks. Each block is marked as X or O. X means a
nonzero bloek (i.e. it has some nonzero elements), and
O means the entire block is zero. The execution
seqquence i deseribed in the following steps.

Siep 1) Ly, and Uy, factors of Au(, are computed by
the sparse lu_gauss( ) mulme Then inverses of L“uilnd
Uy are computed. (Uyg)" is converted to CSC form
and sent 1o the processors assigned to the first column,
This is done 1o exploit the sparsity in multiplication d_.,
the L computations require a multiplication by (Uga)".
Similarly (Lgg)" is converted to CSR form and sent 1o
the first row processors,

Step 2: U Iacmrs of the first row h!uck:s “re mmlpumd
s Unl— (Lo " Agys Upa = (Logl" Ayze Ups = (Log) !
Ay Here, since Ay, = Ay> = 0 (by checking the Az
array). computations lor [, and Uy, are skipped as
they are zero, L faclors ol the first column are com-
puted by Lyg= Ay (Ugg) ', Loy = Aap (Upp) ™y Lyy =
Asp (L)t Hut, since ‘hu = Auy = Ayy = 0. the
computation for L. Lyy. Ly are skipped.

Steps 3. 4: L and U faclors of A, are computed and
inverses sent o appropriate processors. Then U com-
putations in row [ and L computations in column | are
performed. Sparsity at the block level and within a
block is exploited.

Steps 5, 6 L and U factors of Ay, are computed and
nverses senl o appropriate processors. Then U com-
putations in row 2 and L computations in column 2 are
performed. Sparsity at the block level and within a
block is exploited,

Step 7 L and U l'm.:wm im the last diagonal block are
compuled by A'y3 = Az~ (Lyy Uyy + Lay Ujz + Lys
Us ) (computc _A_prime mutmcl Smu. Lyg = L3y =
L31 = Uja= Uz =0, 433 = 434 Thus, :.omputalion
time is saved for A’ 12 Sparse_lu_gauss( ) routine then
exploits the sparsity withiti 4’55 and factors it into Ly
and Us .
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The processor-to-block assignment 4s shown in
Fig. | can now be explained and justified easily. As
indicated by the partitioned algorithm, U, is com-
puted as Uy s = (Lyo)" Ayz Similarly U 5 requires Uy s
in its computation (U, 5 is computed from A’y , which is
equal 10 A 5 = Ay s~ Ly Uyz) Thus the communica-
tion can be reduced if the processor computing Uy » is
also assigned to block 4,5 to compute U, in it. For
this reason, the blocks in a colummn in the upper-trian-
gular part of the mutrix are always assigned to the
same processor. Similarly, the blocks in a row in the
lower-triangulur part of the matrix are assigned to the
same processor to perform the L compultations in order
to minimise the communication. The different row and
column blocks in a parallel step are assigned to differ-
ent processors to exploit the concurrency in the prob-
lem.

The two-level sparse algorithm and the processor-to-
block-assignment scheme as deseribed in Fig. | further
help the load-balancing problem by minimising the
elfect of muny zero matrix blocks being assigned to one
processor during a parallel step. Since the block size is
smull compared with the original matrix, there are
many blocks being executed by s processor during a
purallel step of the algorithm. Also, each processor is
periodically assigned a block over the total number of
blocks in a row or column of the matrix. This improves
the probability of each processor being assigned a simi-
lar number ol zero or nonzero blocks (o the other
processors. Further, by exploiting the sparsity within a
nonzero block, the potentiul of load imbalance is
reduced.

The solution has also been parallelised for two irian-
gular equations (Ly = b, Ux = y) which are needed
after the LU decomposition [16]. Owing (o space con-
straints, only the parallel LU decomposition [which is
more time consuming, O(x")] is discussed in this paper.

siored as

oo al
ofu w

E

LT T -1
L E-A ey -
cocooo
(-]
=
(=3
o

block size = 22
W Storage of o mairis for bvo-level sparse execution

2.2 Sparse-matrix storage to conserve
memary

The CSR and CSC storage schemes described earlier
are used primarily to speedup execution of sparse rou-
tines. However, it is also important that the overall
matrix be stored efficiently so that solution of large
problems is feasible. Matrices generated in the simula-
tion of large circuits are highly spirse and may require
enormons amounts of memory if stored in dense Torm.
For example a matrix representing a circut with 10000
nodes would require 400 Mbyte of RAM il stored as a
regular 2-D array. Thus a sparse-storage scheme is
required which conserves memory while still allowing
efficient uccess to the nonzero elements. In the past,
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several storage schemes have been developed runging
from a simple linked-list type of storage, as imple-
mented in the Berkeley SPICE code, 1o complex over-
lapped scattered arrays [17].

A new storage scheme has been developed Tor the
present two-level sparse matrix solver. To conserve
memory, @ dynamically allocated storage lor nonzero
blocks is carried oul. A 2-D poinfer array 18 mun-
tained in which a pointer points either to the nonzero
block or to NULL if the block is zero. In this way. a
fast access to nonzero blocks can readily be obtained.
An example is shown in g, 4.

The above storage scheme not only conserves mem-
ory bul provides very fast access to elements of a
nonzero block. Since the block-level sparsity is Tound
to be very high (=90% for block sizes < 10 x 10) for
lurge probiems, the memory-saving properties of thig
scheme are very good. Note that the nonzero blocks
are stored in noncompact form for fast access during
the block-level sparse-matrix solution. However, this
noncompaet form is changed (o compact form (CSR/
CSC) to utilise sparsity within a block during exceu-
tion. The scheme deseribed here is also recursive in
nature, 1.e. the 2-D pointer array can be mude 1o point
lo @ lurge block which in turn is stored in terms of
gnother pointer array  and  dynamically  allocated
smaller nonzero blocks. Such an indireet scheme may
be needed in simulation of very large circuits.

2.3 Matrix reordering to minimise fill-in
Reduction of lill-in is an importan! factor in maximis-
ing (he gains in sparsity utilisation. A muatrix reorder-
ing. i.e. relabelling the nodes, can be carried out 1o
reduce the fill-in and thus execution lime. In the devel-
opment of the SPICE circuit-simulation program [1], it
wias concluded that the Markowilz reordering algo-
tithm [I8] provides good reordering with substantially
less computational effort than other approaches, The
Markowitz algorithm works as follows, Select a
nonzera eniry of the active submatrix and bring it 1o
the pivoting position by means of the necessary row
and column exchanges in such a way that the product
a(cn(r) is kepl at & minimum, where nlec), n(r) are,
respectively, the number of nonzero entries in a column
and row of the active submatrix for the entry selected.
The active submatrix is the poruon after the pivol
point,

Since this mutrix solver takes advantage of the spuai-
sity at the block level, the clemeni-level Markowitz
algorithm as described in [18) needs 10 be modified to
obtain & minimum fill-in at the block level, The present
block-level reordering ulgorithm always selects the next
pivot to be a diagonal block whose row-column
nonzero produet s the smallest, The nonzero block
count for a row or column is determined from the
entire matrix and not just the active submatrix, a5 is
usually done in the Markowitz algorithm at the ele-
ment level, The reason is that the Markowitz algorithm
is usually used in conjunction with the solution of a
matrix. However, in the present case, the matrix is
reordered completely before an attempt to solve it is
mude, Since the zero nonzero structure of the original
mutrix is dependent on the physieal circuit mterconnec-
tions, the Markowitz reordering is a one-time overhead
in the solution of a matrix. The algorithm itsell’ is quite
simple and takes much less execution time than the
overall matrix-solution time.
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3 Implementation on transputers

The parallel-sparse  matrix-solution algorithm  as
described in Section 2 has been implemented on an
array of transputers. The implementation hardware
consists of a plug-in board which fits into the PC slol
with seven transputers on it. The main programming
language for implementing the parallel algorithms on
the transputers is ‘parallel C'. The overall program
consists of a group of subprograms intended to run on
different transputers and a configuration file specifying
how the subprograms are mapped onto different trans-
puters. and how the links are connected among trans-
puters. ‘Parallel C' is augmented with some parallel
facilities, including threads (to create parallel processes
within  a transpuler), channels (to  communicate
through links between two processes on different trans-
puters), and semaphore operations cle.

1,0.3.2 [ Iink numbar |

1SA 64 x 64 crossbar awiich I
syslom
Intertace
—_1
— 1
IMS T225 0
p———— 2

Fig.5 Ultra-XL fumctional block diagram

ool node

Fig.6 Tramputer interconnections 1o parallelise SOLVE officiently

T1 computes L oand U s disgonul blocks und performs 10

T2, T3, 14 compure L hlosks m the gpper-taangular portion of the matrix
14, 16, 17 scommite L hiocks in the lower-triangilar portion of the matrix
Phagonal connections are used Lo exchunge L block wilues efficiently
between transpulers nesded n different components

Fig. 5 shows the 16-bit add-in card called ULTRA/
XL for a 80x86 IBM PC AT bus. The add-in card can
contain up to 10 transputer modules (called TRAMS,
e, transpuler plus 4 Mbyte RAM). Each TRAM is5 a
T805-25 Mhz compute node. The hardware intercon-
nections between the wansputers can be chunged 1o
some extent by programming the crossbar switch. The
communication speed between (ransputers for the
ahove setup is 2Mbyite/s. Because the parallel-comput-
ing environment is message-passing type, an efTicient

transputer-interconnection network needs o be set up,
An cificient partitioning and mapping scheme was
described 1 Section 2 which maximises concurrency
and minimises communication between transputers (see
Fig. 1. The transputer interconnection network Lo
implement this scheme is shown in Fig. 6.

4 Results

The performance of the sparse-mairix SOLVE was
tested on matrices wenerated from ISCAS-85 bench-
mark circuits. The ISCAS-85 circuits are gate-level
combinational circuits. These circuils were expanded to
their equivalent CMOS transistor-level circuits. From
this netlist, the corresponding zero-nonzero structure
of the matrix was generated. Table 1 shows the charac-
teristics of the matrices used m this study. Table 2
shows the block-level sparsity in the benchmark matri-
ces for different size blocks.

Table 1: Characteristics of ISCAS-85 benchmark circuits
and corresponding matrices

Circuit type o0432 ¢0499 cOBBD ¢1355
Transistors 718 1140 1802 2308
Matrix size 360 498 924 1218

Element-level 89917 99.36 98.73 89.74
sparsity (%)

Table 2: Block level sparsity in ISCAS-85 benchmark cir-
cuits for different block sizes

Circult type ¢0432 ¢0499 0880  c1356
2x2 hlock sparsity 97.16 98,83 99,22 99.09
33 hlock sparsity 85.45 §7.83 98.51 98.36
4x4 block sparsity 92,69 97.51 97.83 86,85
56 block sparsity 89.39 96.14 95,25 96.21
6x6 biock sparsity #5.689 85.61 9522 96.02
77 hlock sparsity 82,21 94,72 93,89 §93.41
8x8 block sparsity 77.63 96.23 92.39 89,82

The performance of a one-level sparse solution
scheme, where the spursily is exploited at the block
level only, was compared with that of a two-level
scheme. Both algorithms have a sparse storage scheme
using 4 2-D pointer array and dynamic allocation of
nonzero blocks for memory efficiency, as expluined in
Section 2.2. The difference between the one- and two-
level sparse algorithms is the use of the compressed-
sparse-row/column-storage scheme, sparse-block multi-
ply. and sparse-LU-decomposition routines to exploit
the sparsity within a nonzero block. Thus the two-level
sparse algorithm has additional conversion overhead in
converting a block stored mn dense form to CSR or
CSC form. However, this conversion overhead is a
minimum since it is O(m?®) where m x m is the block
size. Compare this with a block-matrix-by-block-mutrix
multiply which is O(ns%). TT the sparsity in the block is
high, the sparse-multiply time may turn out to be 0.1n*
operations (instead of 2m?). Thus, cven with the con-
version overhead, the sparse-block-multiply time will
be much less than 1f the block were treated us dense in
the matrix multiplication. The two-level sparse algo-
rithm will be more efficient if block sizes are relatively
large so that the sparsity within a nonzero block is
higher.
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Fig. 7 shows a comparison of execution time among
paralle] one-level and two-level sparse-matrix LU-
decomposition times on the c0880 benchmark circuit.
For both these cases, a4 block size of 6 x 6 was used. By

viarying the block size for several circuits, it was deter-
mined that a size of 6 x 6 yields low execution times.
To show how il compares Lo the sequentinl case, the
execution time for this is also shown in g, 7. It can
be seen that two-level spurse algorithm improves the
execution time considerably. The parallel sparse algo-
rithms have improvement in exccution lime as the
number of processors is increased. The results obtained
are similar for the other benchmark circuits [16].

exacution time

processors

ﬂg t umpurmm aof execution times on the (880 clrcult (matrix sise
24 % Y24
{i) one-level sparse
(i) rwas-level sparse

25

execulion lims

06 +

D r— + 1 4 t
2 4 B B 10 12
block size

8  Execution time against block size for the mwo-level sparse algo-
rrr i
twirdeve] sparse
- sequential

It is important to determine the partitioned-block
size which yields the best exceution lime. The c0432
henchmark circuit was used for the parallel sparse LU~
decomposition algorithms to determine the optimum
block size for the transputer system. Fig. 8 shows a
graph for the two-level sparse algorithm for the c0432
circuit. It indicates thal the best execution time is
obtained when the block size is from 6 x 6 to 10 x 10
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with seven processors. For a one-level sparse algo-
rithm, the optimum block size wrned out to be
between 4 x 4 and 6 x 6. This is expecied because the
one-level sparse algorithm exploits sparsity only at the
block level and this sparsity decreases if the block size
is increased. The two-level algorithm can tolerate
higher block sizes since it can exploit sparsity within a
block. The higher block size¢ i3 needed Lo match the
granularity of the problem, Le. the computation-lo-
communication ratio of the processors and the inter-
connection network employed.

procasaoms

Fig.9 Cumpurison of LU decompositwn times for original and reor-
dered mulrix
——— origing] matrix

reordered mutnx

Fig. 9 shows a comparison of execution time of Lhe
original matrix and that of the reordered matrix on the
¢1355 cireuit using the modified Markowiiz's algorithm
as described in Section 2.3, The exccution times are for
the parallel two-level sparse-matrix L U-decomposition
algorithm using a block size of 6 = 6. Il can be seen
that the block-level reordering scheme improves the
execution time considerably,

65 Conclusions

In this paper, a novel technique which directly parti-
tions the sparse matrix and thus has a better potential
for load balancing in a parallel implementation is
described. The scheme exploits sparsity both at the
block level and within each nonzero block. The two-
level sparse scheme [lurther helps the load-balancing
problem by minimising the effect of many zero matrix
blocks being assigned to a processor during a parallel
time step. A novel mapping of matrix blocks Lo proces-
sors has been developed which exploits maximum par-
allelism in the LU decomposition and back substitution
according to the number ol processors available, and
also minimises the communication between processors.
A Tull implementation imcluding the sparse-malrix-stor-
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age and block-level-reordering schemes 1s carried out
on a transputer array. Good accelerations are obtained
in all benchmarks tested up to the number of proces-
sors availuble for the experiment.

This work needs to be extended to allow for a com-
plete execution environment for a direct simulation
program such as SPICE. The present project has imple-
mented only the SOLVE phase. The LOAD phase,
which assembles the sparse matrix from a given circuit,
is also & time-consuming part which needs to be paral-
lelised. However, the parallelisation of the LOAD parl
is relatively easy. To maximise overall efficiency, the
matrix assembly in the LOAD phase should be divided
exactly according to the block assignment for different
processors in the SOLVE phase.
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