J Intell Robot Syst
DOI10.1007/510846-013-9991-7

Modular Design: A Plug and Play Approach to Sensory
Modules, Actuation Platforms, and Task Descriptions
for Robotics and Automation Applications

Ayssam Elkady - Jovin Joy - Tarek Sobh -
Kimon Valavanis

Received: 22 April 2013 / Accepted: 7 October 2013
© Springer Science+Business Media Dordrecht 2013

Abstract In this paper, the RISCWare frame-
work is proposed as a robotic middleware for
the modular design of sensory modules, actua-
tion platforms, and task descriptions. This frame-
work will be used to customize robotic platforms
by simply defining the available sensing devices,
actuation platforms and required tasks. In addi-
tion, this framework will significantly increase the
capability of robotic industries in the analysis,
design, and development of autonomous mobile
platforms. RISCWare is comprised of three mod-
ules. The first module encapsulates the sensors,
which gather information about the remote or
local environment. The second module defines the
platforms, manipulators, and actuation methods.
The last module describes the tasks that the ro-
botic platforms will perform such as teleoperation,

A. Elkady (X)) - J. Joy - T. Sobh

School of Engineering, University of Bridgeport,

221 University Avenue, Bridgeport, CT, 06604, USA
e-mail: ayssam.elkady@gmail.com

J. Joy
e-mail: jovinj@gmail.com

T. Sobh
e-mail: sobh@bridgeport.edu

K. Valavanis

Electrical and Computer Engineering,
University of Denver, Denver, CO 80208, USA
e-mail: kimon.valavanis@du.edu

Published online: 30 October 2013

navigation, obstacle avoidance, manipulation, 3-D
reconstruction, and map building. The objective is
to design a middleware framework to allow a user
to plug in new sensors, tasks or actuation hard-
ware, resulting in a fully functional operational
system. Furthermore, the user is able to install and
uninstall hardware/software components through
system lifetime with ease and modularity. In ad-
dition, when hardware devices are plugged into
the framework, they are automatically detected by
the middleware layer, which loads the appropriate
software and avails the device for applications
usage. This automatic detection and configuration
of devices make it efficient and seamless for end
users to add and use new devices and software
applications. Several experiments, performed on
the RISCbhot Il mobile robot, are implemented to
evaluate the RISCWare framework with respect to
applicability and resource utilization.

Keywords RISCWare - Middleware -
Plug and play - Teleoperation - Face detection -

Face recognition - Modular design -
Architecture - RISCbot I1

1 Introduction
Robotic middleware is designed to manage and

hide the complexity and heterogeneity of com-
ponents running on possible multiple platforms

@ Springer

J Intell Robot Syst

in different locations, promote the integration of
new technologies, simplify software design, and
reduce the time and complexity of the develop-
ment of robotic software and maintenance costs.

Most existing robot control software, which is
installed in the robot to control it, is mainly de-
signed for a specific hardware platform, sensory
devices, applications and programming language.
Based on these considerations, we propose a ro-
botic middleware, called RISCWare (developed
at the Robotics, Intelligent Sensing, and Con-
trol (RISC) lab). RISCWare is a generic frame-
work for robot communication infrastructures
that explicitly targets autonomous mobile ma-
nipulation platforms. RISCWare is developed to
support different sensory devices, actuation plat-
forms, and software applications. In addition, it
is available for different programming languages.
It is designed to be a modular, efficient, flexible,
platform-independent middleware platform. Fur-
thermore, the components (software and hard-
ware) can be replaced before or during runtime.

The flexible property of RISCWare enables a
third party to design self-configuring modules,
and the Plug and Play (PnP) property of the
RISCWare gives the robot’s user the ability to
plugin a component, which the RISCWare then
recognizes. The plug-and-play allows auto-detection
and auto-reconfiguration of the attached stan-
dardized components (hardware and software),
according to current system configurations. This
automatic detection and reconfiguration of de-
vices and driver software makes it easier and more
efficient for end users to install and use or unin-
stall hardware/software components. When the
hardware devices are plugged into the framework,
they are automatically detected by the middle-
ware layer, which loads the appropriate software
and takes advantage of the device for applications
usage. One of the most desirable characteristics
of the RISCWare is the resource-efficient trans-
mission schemes that achieve the best utilization
of available networking resources. The utilization
of runtime communication should be efficient be-
cause the sensory devices generate many small
messages on a regular basis.

RISCWare is implemented as a messaging sys-
tem (queue-based and component-based) used to
communicate between any component (sensory

@ Springer

device, actuation platform and software applica-
tion) at any desired time, as illustrated in Fig. 1.
We chose to implement RISCWare as a messag-
ing system because messaging provides a high
degree of decoupling between components, so it
plays a key role in the integration of heteroge-
neous systems. RISCWare facilitates and manages
the runtime communication between framework
components through the use of messages as the
method of integration; RISCWare provides the
ability to create, define the syntax, manipulate,
store, and communicate these messages. The com-
ponents can be abstracted and decoupled in such
a way to be replaced with little or no knowledge
by the other components. In addition, messaging
offers the ability to process requests asynchro-
nously to increase the performance of the system
and reduce system bottlenecks. Most communica-
tion between the components is asynchronous and
therefore does not require immediate response
from the receivers. Once a message is sent, the
sender can move on to other tasks; it does not
have to wait for a response. Furthermore, parallel
processing in RISCWare is achieved by introduc-
ing multiple message receivers that can process
different messages simultaneously.

RISCWare is comprised of three modules. The
first module encapsulates the sensors that gather
information about the remote or local environ-
ment. The second module defines the platforms,
manipulators and actuation methods. The third
module describes the tasks that the robotic plat-
forms will perform, such as: teleoperation, naviga-
tion, obstacle avoidance, and manipulation.

— Sensory
Application |* » @

RISCWare
— - Sensory
Application |g—— ¥ Device

Fig. 1 Overview of the the RISCWare framework

J Intell Robot Syst

Furthermore, several experiments, performed
on the RISCbhot Il mobile manipulation platform,
are described and implemented to evaluate the
RISCWare framework with respect to applicabil-
ity and resource utilization.

2 Related Work

There are several other robotics software plat-
forms available such as Robot Operating System
(ROS) [1], CLARALty [2], Player [3], Miro [4],
Webots [5], RT-Middleware (RTM) [6] SmartSoft
[7], Orca [8], OPRoS [9], and Microsoft Robotic
Studio [10]. A survey of robot development en-
vironments (RDEs) by Kramer and Scheutz [11]
described and evaluated nine open sources, freely
available RDEs for mobile robots. In [12] and
[13], an overview study of robot middleware is
provided. Finally in [14], some freely available
middleware frameworks for robotics were ad-
dressed, including their technologies within the
field of multi-robot systems.

In [15], we outlined the architecture and some
important attributes, with the comprehensive set
of appropriate bibliographic references that are
classified based on middleware attributes for
most of the existing robotic middleware, such as
Player, CLARAty, ORCA, MIRO, etc. Further-
more in [15], we presented a literature survey and
attribute-based bibliography of the current state-
of-the art in robotic middleware design.

3 RISCWare Features

The goal of this research is to design a framework
(software and hardware) to be equipped with the
mobile manipulators and enable them to act ro-
bustly and autonomously for various tasks and
in different environments. This framework sup-
ports software modularity and abstraction, does
not have any restrictions on the architecture of
the control software, and also hides the low-level
details of the device by providing hardware APIs.
The details of RISCWare features are described
in [16].

In RISCWare, the sensors are allowed to be
reconfigured for use in different tasks like a stereo

camera that can produce 3D range points and raw
images. By using an appropriate multi-level device
abstraction hierarchy, these sensor devices could
be made integrable. The sensors and actuators of
a robot are treated as shared resources to be used
by several software applications.

The RISCWare components (software and
hardware) can be downloaded, installed and con-
figured at or before run-time.

As shown in Fig. 2, RISCWare provides some
security mechanisms for authentication, autho-
rization, and secure communication. Authenti-
cation is the mechanism to provide a way of
identifying the user of the systems (such as by

RISCWare Service is
requested

Secure
Communication
required

Yes—l

Mo Encrypt Data
g
. |
: Internet or Intranet :
1
| o | P S |

3
< Decrypt Data
b4
Valid
Authentication
Y Mo

Valid
Authorization

Yes

h 4

Authorized request Denied request

Fig. 2 Authentication, authorization and secure
communication

@ Springer

J Intell Robot Syst

having the user enter a valid user name and pass-
word). After the authentication process, autho-
rization is required to determine what types or
resources, services and access level a particular
authenticated user is permitted. The secure com-
munication is performed by encrypting the mes-
sages to prevent eavesdroppers from spying on the
messages.

RISCWare supports parallelism by performing
a number of processes simultaneously. Data and
control flow are passed asynchronously from one
component to others over the middleware. Asyn-
chronous communication means that the sender is
not required to wait for the message to be received
or handled by the recipient. The sender is free to
send the message and continue processing.

The framework can be re-scaled as its compo-
nents grow in order to take full advantage of it.
Furthermore, any part of the framework should
be able to extend its capabilities without affecting
the other parts. The components should be open
for extension and closed for modification (i.e., the
components should be easily extended without
modifying the existing codes).

RISCWare provides reliable communication
for higher priority messages in order to guarantee
the delivery of a high priority message, even if a
partial failure occurs. Guaranteed Delivery uses a
store-and-forward mechanism, which means that
incoming messages will be written out to a per-
sistent store if the intended consumers are not
currently available. Persistence increases reliabil-
ity, but at the expense of performance. Further-
more, Guaranteed Delivery can consume a large
amount of disk space scenarios. RISCWare allows
configuring of a retry timeout (Time-To-Live)
parameter that specifies how long messages are
buffered inside the messaging system.

RISCWare provides some fault detection and
recovery capabilities to be used in real, critical
situations. A failure in one module should not
damage the whole system; there is always the
possibility of a fault at runtime. The faults in a
robot framework should be detected and localized
and also the robot should be able to complete its
mission or at least to proceed to a safe mode. Even
if the hardware and software of an autonomous
mobile robot are carefully designed, implemented
and tested, there is always the possibility of a

@ Springer

Fault Detected

RISCWare
Compenent Fault

Repairable Fault

Yes B
~" Need ™

<__ Rollback No
Yes

Repair Rollback

{ RISCWare g
\ /
\ /

Fig. 3 Self-reconfigurable fault tolerance

fault at runtime. Some level of redundancy and
robustness against such fault is crucial for a truly
autonomous robot. In order to improve the ro-
bustness of the control system against faults at
runtime, RISCWare is enriched with fault detec-
tion capabilities. Partial failure in the system is a
fact of life. One of the components may need to
be shut down at some time during its continuous
operation or have an unpredictable failure. As
shown in Fig. 3, the self-reconfigurable fault toler-
ance component has the ability to detect its faults
or anomalies and then repair them autonomously.

4 RISCWare Middleware

As shown in Fig. 4, RISCWare is installed on top
of the Linux operating system and LINX. LINX

J Intell Robot Syst

Fig. 4 RISCWare
components

[17] is a distributed communication protocol
stack for transparent interprocess communication.
LINX provides the same services to the appli-
cation regardless of hardware, operating system,
physical interconnection, or network topology,
and acts as a transport for bearer protocols such as
UDP and TCP, as described in [17]. Furthermore,
LINX supports failure reporting for both phys-
ical CPU interconnects and logical connections
between endpoints.

The RISCWare is a middleware which consists
of two main parts: the core logic, which contains
the main functionalities, and the wrapper, which
provides the interface of the logic core to the
external components. SWIG, which is a free soft-
ware development tool, is used to connect be-
tween the RISCWare core (written in C++) and
the other software components (written in other
languages such as Python and Perl). SWIG sup-
ports different types of target languages, including
scripting languages such as Perl, PHP, Python, Tcl
and Ruby, and non-scripting languages such as C#,
Common Lisp (CLISP, Allegro CL, CFFI, UFFI),
D, Go language, Java, Lua, Modula-3, OCAML,
Octave, and R [18].

RISCWare consists of six layers: OS & Hard-
ware Layer, Hardware Abstraction Layer, Mes-
saging Layer, Actions Abstraction Layer, Actions
Layer and Applications Layer. Each layer is de-
scribed in detail in [19]. The RISCWare compo-
nent consists of two main parts: the core logic,
which defines the main functionality of the com-
ponent, and the wrapper, which provides the in-

terface of the logic core to the external compo-
nents. The functionality, operability and architec-
ture of the RISCWare modules are described in
more details in [16].

A RISCWare user can configure the desired
behavior by choosing a set of selective modules at
(or before) runtime out of all available modules by
simply performing a drag-drop from the available
modules panel to the selected modules panel on
the GUI, as shown in Fig. 5. In order to start the
RISCWare (installed in RISCbot II as shown in
Fig. 6), a small boot-loader program reads and
interprets the system configuration profile from
an XML file (including the number and type of the
components defined in the RISCWare), proceeds
to load the appropriate components onto mem-
ory in accordance with each component profile,
and establishes their connections. The RISCWare
scheduler decides which component to run first
and then allocates a process to execute it. The
scheduler is responsible for the starting, stopping,
suspending, and resuming of the component. The
user can select the configuration to load from a
GUI form (shown in Fig. 5), or its name could
be hard-coded into the boot loader. In this way,
different permutations (choices of sensory de-
vices, actuation platforms and software applica-
tions) can be loaded during (or before) runtime.
The experiments were carried out as follows:

5 RISCWare Communications

The RISCWare component uses a client/server
mechanism for control flow and the pub-
lisher/subscriber for data/event flow and defines it
as Input/Output Ports. Two modes can be used:
Pull or push the data (as shown in Fig. 7). As
shown in Fig. 8, the Input-Push port subscribes
to the Output-Push port by calling Subscribe();
also it can unsubscribe from the Output port by
calling Unsubscribe(). The methods Start() and
Push() are called by the server-component but
Subscribe() and Unsubscribe() are called by the
client-component. The Publisher pushes the mes-
sages to all the subscribers and the subscribers
receive the messages without requesting them.
GetData() is called by the client-component in or-
der to get the last update of the data. On the other

@ Springer

J Intell Robot Syst

Fig. 5 RISCWare’s main

menu RiscBot Configurator

Robot Component

Available Sensors|

Robot Motion | Run Robot

Available Motion |

Available Services|
ObstacleAvoidance |
ManualDriving |
HumanDetection |

Selected Sensors |

Camera back right |
Sonar back_left |
Laser
Kinect

Selected Services||lll Selected Motion |

SPEED
2

i
front
front_right
front_left
back |
right |
left

hand, the sequence diagram of the Pull Mode is
shown in Fig. 9. The subscriber sends a request
message to the publisher in order to get a data
message. The UML diagrams of the RISCWare-
component, Input and Output Ports (Push and
Pull Modes) are shown in Figs. 10 and 11.

5.1 Configuration Management

Configuration files are a set of XML descriptors
describing configurations and properties of the
hardware and software in a domain. For example,
the Hardware Configuration File (HCF) describes
hardware configurations and hardware proper-
ties, the Software Configuration File (SCF) de-

@ Springer

scribes a software configuration and the connec-
tions among components. The Hardware/Software
Manifest File (HSMF) describes a software com-
ponent or a hardware device. The Properties
Descriptor (PD) describes optional reconfigurable
properties, initial values, and executable parame-
ters that are referenced by other domain profiles.
The Configuration Manager Descriptor (CMD)
describes the Configuration Manager components
and services used. The Robot Configuration File
(RCF) is used to specify the different parameters
related to a given robot, such as sensor number,
types, position and orientation, platform kine-
matics model and its parameters such as length,
height, width, weight, payload, translation speed,
and rotation speed. Hardware Driver Writing tool

J Intell Robot Syst

Fig. 6 RISCbot Il mobile robot

provides facilities for auto-generating code by us-
ing a Driver Template provided by RISCWare and
the XML Driver file, which is a configuration file
provided by the user that contains the required
information about the new hardware device.

6 Namespace Directory Service

Services are shared functions and tools that aid
architects and developers to implement a solution,

Fig. 7 Data flow of the
Push/Pull Modes between
the publisher and
subscribers

Pus

l—Full

Publisher

and are not a part of the core. A service should
be a well-defined function and also should always
be available to respond to requests. To be able to
use the service, first the new service should add
itself in the available services Namespace Direc-
tory of the middleware. The Namespace Directory
provides a map between a logical name of sensor
(used by the developer such as SONART1) and the
physical sensor. Then, each service should declare
its interface to allow any application to communi-
cate and use it. The Namespace Directory tracks
all the loaded components and key information
about the system. It is used to automate the ac-
tion of locating any RISCWare component (in the
same way for remote and local components). The
publisher component registers its service in the
Namespace Directory and then the subscriber dy-
namically locates the publisher via this Directory,
as shown in Fig. 12.

Upon initialization, the sensors register their
sensory information, defined in an XML descrip-
tor, on the Namespace Directory. The XML de-
scriptor contains meta-information about a hard-
ware device such as the properties and parameters
for the device, for example, for the laser range
finder’s profile, which contains Baud rate, Field
of view (the angular scan range in degrees such as
180 or 270 degrees), and angular resolution. The
sensory XML descriptor contains:

— ID: Sensors should be identified by a unique
ID so that the Namespace Directory can use
them. The ID numbers are assigned to all the
Sensors.

— Sensor Type: The sensor type can be sonar,
infrared, laser range-finder, etc.

Push—p

P U | et

Subscriber

Push—

Pull—— Subscriber

@ Springer

J Intell Robot Syst

Fig. 8 Sequence diagram
of the Push Mode
between two components

— Position and Orientation: To describe the lo-

Publisher Subscriber
(Core j (Oulput-Push Portj [lnput-Push Ponj [Core)
T T T
| star) : e
I I‘—I
— I I
| ! Subscribe() !
1 1 1

: r—
] Subscribe() | :
1 I I
! Push() - : GetData() |
1 | I
—————®! push() - 1
! . Push() !
1 » *
i Push() : GetData() :
1 ! 1
! Push() Push() |
1 oy |
I g »
1 1 1
1 I I
I 1]
A ! Subscribe() |
: e
1 I I
] Umsubscribe() ; :
| « i |
1 I I
I 1 1
1 1 1
1 1 1
I 1 1
I I I
I I I

cation and orientation of each sensor. Some

sensors (such as sonars and infrared sensors)
depend on their position and orientation but
some sensors (such as temperature and hu-
midity sensors) are not seriously dependent on
the location and orientation.

— Name: Such as Front_Sonar_I, this is used by
the RISCWare programmers to refer to the
sensor. Then the Namespace Directory maps
this name to the physical sensor.

Fig. 9 Sequence diagram
of the Pull Mode between
two components

@ Springer

7 Experiments

In this section, nine experiments are briefly sum-
marized in order to illustrate and prove the
adaptive, modular and robust capabilities of
RISCWare. Samples of the nine experiments are

uploaded on YouTube at (http://www.youtube.

com/watch?v=8uYIMBleMwc). RISCWare uti-
lizes its currently available Plug-and-Play, auto-
configurable and independent modules (sensory
devices, mobile manipulation actuation platforms,

Publisher
[Core) [Outpul-Pull Portj
Request() <
<
Send()

' Send()

Subscriber
Enput-F‘uII Port) [Core)
- Request()
Request() <
» Send() |
o

http://www.youtube.com/watch?v=8uYlMB1eMwc
http://www.youtube.com/watch?v=8uYlMB1eMwc

J Intell Robot Syst

RISCWare Component 1

+onStart()
+onReset()
+onStop()
+onErmor)
+..0)

Qutput-Push Event Port

Output-Push Command Port

Qutput-Push Data Port

Input-Push Event Port

Input-Push Command Port

Input-Push Data Port

AV

Output-Push Port

+Subscribeq)
+Unsubscribe()
+Pushi}
+Starti)

Fig. 10 UML of the RISCWare-component, Input and Output Ports (Push Mode)

and goal-directed applications) to create an op-
timal and ultimate behavior using existing re-
sources. RISCbot II (shown in Fig. 6) [20] contains

\VA

Input-Push Port

+Subscnbe()
+Unsubscribed)
+Pushi)
+Create()
+GetData()

a variety of sensors such as an array of 13 ultra-
sonic sensors, an array of 11 infrared proximity
sensors above the sonar ring, a Hokuyo Scanning

RISCWare Component

+onStart()
+onReset()

+onError()
+....()

+onStop() 1..

Qutput-Pull Event Port

Qutput-Pul Command Port

OQutput-Pull Data Port

Input-Full Event Port

Input-Pull Command Port

Input-Pull Data Port

AV

Qutput-Pull Port

+Send()

Fig. 11 UML of the RISCWare-component, Input and Output Ports (Pull Mode)

N

Input-Pull Port

+Send()

@ Springer

J Intell Robot Syst

Mamespace
Directory

Reqgister, Find
Check Result
Publisher atp————Bind—————m= Subscriber

Fig. 12 Collaboration between publisher, subscriber and
the Namespace Directory

Laser Rangefinder, wireless network camera and
Xbox Kinect. Moreover, the currently developed
software applications are: manual driving, obsta-
cle avoidance, and human detection. In order to
illustrate that RISCWare is a portable framework
that can be installed on any mobile manipulation
platform, RISCbot II is used as a configurable
platform to simulate different types of mobile
robots via configuring different combinations of
directions such as (North, South, East, West, etc.)
and the speed limit.

7.1 Experiment 1: Manual Driving Mode, Using a
Wireless Camera and RISCbhot II (Initial
Speed =2)

— Modules:

— Sensory devices: Wireless camera

— Software application: Manual driving

— Platform: RISCbot II (all directions
are permitted (i.e. North, South, East,
West, North-East, North-West, South-
East, and South-West), and initial speed
set to 2)

— Description/Results: This experiment illus-
trates manual-mode driving being performed
with fully human intervention operating on
the RISCbot II to move in all directions at
an initial speed 2 (the speed limit is also
configurable), using either the GUI controller
form, shown in Fig. 13, or the web-based GUI
controller form, shown in Fig. 14, which can
run on any portable device (i.e. iPhone, An-
droid, etc.). A sample of RISCbot II behavior
and camera captured images are shown in
Fig. 15.

@ Springer

Fig. 13 Manual driving module

7.2 Experiment 2: Manual Driving Mode, Using a
Wireless Camera, a Laser Range-Finder and
RISCbot II (Initial Speed = 2)

— Modules:

— Sensory devices: Wireless camera and
laser range-finder

— Software Application: Manual driving

— Platform: RISCbot II (all directions are
permitted (i.e. North, South, East, West,
North-East, North-West, South-East, and
South-West), initial speed set to 2)

Fig. 14 Web-based
manual driving module
running on iPhone

il ATAT 3G

[Riscware Manual Driving °’|

000

O8O
000

J Intell Robot Syst

Fig. 15 Experiment 1,
manual driving mode
using wireless camera

Description/Results: This experiment illus-
trates manual-mode driving being performed
with fully human intervention, as described
in Experiment 1, with the addition of using
the laser range-finder as a selected sensory
module. As expected, the result of this exper-
iment is the same as what was observed in
Experiment 1, since adding the laser range-
finder does not have any additional value to
the RISCbot II behavior.

7.3 Experiment 3: Semi-Autonomous Driving

Mode (Manual Driving and Obstacle
Avoidance), Using a Wireless Camera,
A Laser Range-Finder and RISCbot 11
(Initial Speed = 2)

Modules:

— Sensory devices: Wireless camera and
laser range-finder

— Software application: Manual driving and
obstacle avoidance

— Platform: RISCbot II (all directions are
permitted (i.e. North, South, East, West,

| SRS R S CEMEOGN B

wsring |l s
]

4 =1L
5-;“15{';1

North-East, North-West, South-East, and
South-West), initial speed set to 2

Description/Results: This experiment illustrates
semi-autonomous driving (manual driving
and obstacle avoidance) being performed with
some human intervention and using the laser
range-finder sensor and wireless camera as
selected sensory modules. Laser range-finder
is capable of detecting obstacles at the height
of 0.9 meter; RISChot II is able to navigate
through obstacles using the Potential Field
algorithm for obstacle avoidance in addition
to the human-intervention manual driving.

7.4 Experiment 4: Fully Autonomous Driving

Mode (Obstacle Avoidance), Using a Laser
Range-Finder and RISCbot 11 (Speed
Limit =2)

Modules:

— Sensory devices: Laser range-finder

— Software application: Obstacle avoidance

— Platform: RISCbot II (all directions are
permitted (i.e. North, South, East, West,

@ Springer

J Intell Robot Syst

North-East, North-West, South-East, and
South-West), speed limit set to 2

Description/Results: This experiment illus-
trates fully autonomous driving (obstacle
avoidance) being performed without any hu-
man intervention by using the laser range-
finder as a selected sensory module. Laser
range-finder is capable of detecting obstacles
at the height of 0.9 meter; RISChot I is able
to autonomously navigate through obstacles
using obstacles using the Potential Field algo-
rithm for obstacle avoidance.

7.5 Experiment 5: Fully Autonomous Driving

Mode (Obstacle Avoidance), Using a Laser
Range-Finder and Limited RISCbot I1
(North-East, and North-West Directions are
Prohibited, Speed Limit Set to 3)

Modules:

— Sensory devices: Laser range-finder

— Software application: Obstacle avoidance

— Platform: RISCbot II (selective direc-
tions are prohibited (i.e. North-East, and
North-West), speed limit set to 3

Description/Results: This experiment illus-
trates fully autonomous driving (obstacle
avoidance) being performed without any hu-
man intervention by using the laser range-
finder as a selected sensory module. Laser
range-finder is capable of detecting obstacles
at the height of 0.9 meter; the RISCbot II is

able to autonomously navigate through obsta-
cles using only the permitted directions with
a higher speed considering pervious experi-
ments using obstacles using the Potential Field
algorithm for obstacle avoidance.

7.6 Experiment 6: Fully Autonomous Driving

Mode (Obstacle Avoidance), Using a Laser
Range-Finder and Limited RISCbot I1
(North, North-East, and North-West
Directions are Prohibited, Speed Limit

Set to 3)

Modules:

— Sensory devices: Laser range-finder

— Software application: Obstacle avoidance

— Platform: RISCbot II (selective directions
are prohibited (i.e. North, North-East, and
North-West), speed limit set to 3)

Description/Results: This experiment illus-
trates fully autonomous driving (obstacle
avoidance) being performed without any hu-
man intervention by using the laser range-
finder as a selected sensory module. Laser
range-finder is capable of detecting obstacles
at the height of 0.9 meter. Since few of
the directions of RISCbot Il were prohib-
ited (i.e. North, North-East, and North-West),
the RISCbot II available directions to choose
from accordingly were East, West, and South
as a result, the RISCbot II behavior was mov-
ing in orbital motion.

Fig. 16 Experiment9,
fully autonomous driving
mode with human
detection using Xbox
Kinect, laser range-finder,
and sonar

@ Springer

J Intell Robot Syst

50

. |
a0 I 1 I |
“T1— — | |
= 30 . = Throughput (8
i i
= 20
£ 15 = Max
e 10
5
0
SR E I N IO HIBE
Message Sequecne (size 8 Bytes)
Fig. 17 Throughput of the RISCWare tested using a message size of 8 bytes, running on PavilionDV6T Laptop
7.7 Experiment 7: Fully Autonomous Driving obstacles using the Potential Field algorithm
Mode (Obstacle Avoidance), Using Sonar for obstacle avoidance. It was also observed
Sensors and RISCbot II (Speed Limit Set to 2) that RISChot II behavior was more optimal
using the laser range-finder than using sonar
— Modules: sensors, as the output readings from the laser

range-finder are more accurate with a higher

— Sensory devices: Sonar .
sample rate comparing to the sonar.

— Software application: Obstacle avoidance
— Platform: RISCbot II (all directions are
permitted (i.e. North, South, East, West, 7.8 Experiment 8: Fully Autonomous Driving

North-East, North-West, South-East, and Mode (Obstacle Avoidance), Using a Laser
South-West), speed limit set to 2 Range-Finder, Sonar Sensors and RISCbot 11
(Speed Limit Set to 2)

— Description/Results: This experiment illustrates
fully autonomous driving (obstacle avoidance)

being performed without any human intervention ~ Modules:

by using the sonar sensor as a selected sensory — Sensory devices: Sonar and laser range-finder
module. The sonar is capable of detecting ob- — Software application: Obstacle avoidance

stacles at the height of 0.7 meter; the RISCbot — Platform: RISCbot II (all directions are
11 is able to autonomously navigate through permitted (i.e. North, South, East, West,

100
90
20 i |

I i g |
S & ‘ ——Throughput (16
s Bytes
g)
4
%ﬂao
= 30 e M A
E

20

10

0

TR R R B AR BN RGN R 2 RRARANYEIAGEREAHKRENIER

.—<.—-‘—c-—1NNNNmmmmmq--q-:.r-:rsmmmm\omw\chnhhmmmmmmo\mm

Message Sequecne (size 16 Bytes)

Fig. 18 Throughput of the RISCWare tested using a message size of 16 bytes, running on PavilionDV6T Laptop

@ Springer

J Intell Robot Syst

——Throughput (32

Bytes)
—Min

e Max

TRSRBIRUERRARERS RSB RARRAO R BRERUERFERE
Message Sequecne (size 32 Bytes)

Fig. 19 Throughput of the RISCWare tested using a message size of 32 bytes, running on PavilionDV6T Laptop

400

350
‘E 300
= 250 ——Throughput (64
Bytes)
E 200 Min
150
E ——Max
F 100
50
]

CRRBERUUBRANANIANCBERAREANS8G RERERREE

- - = = nmnununnmw

Message Sequecne (size 64 Bytes)

921
944
967
950

Fig. 20 Throughput of the RISCWare tested using a message size of 64 bytes, running on PavilionDV6T Laptop

700 -
P |
600 -
£ 0 il Siartt ! Throughput(128
. Bytes)
§ 200 —Ml: :
E 300 - M
£ 200 - ' B
100 -
o
RS RBERURRARANARAARCUGISAREAOGBa REREBUEETTRE

Message Sequecne (size 128 Bytes)

Fig. 21 Throughput of the RISCWare tested using a message size of 128 bytes, running on PavilionDV6T Laptop

1600
1400
wiowo | 1ol |
g 1000 =—Throughput {256
E Bytes)
=—Min
E ———Max

« 885N

TR IR AN RAR AR RSB R AR RO R R R ULBEIRE
Message Sequecne (size 256 Bytes)

Fig. 22 Throughput of the RISCWare tested using a message size of 256 bytes, running on PavilionDV6T Laptop

@ Springer

J Intell Robot Syst

Throughput (Mbps)

8 B
o =4
(=] =]

=
wu
=3
=

=
=
=3
=

3000

=———Throughput (512
Bytes)

—Min

500 -+

———Max

24

70

93
116
139
162
208
231
277
300
323
346

BROBOASA
m m TS TOWNn

Message Sequecne

415

944
967

Fig. 23 Throughput of the RISCWare tested using a message size of 512 bytes, running on PavilionDV6T Laptop

North-East, North-West, South-East, and
South-West), speed limit set to 2

Description/Results: This experiment illus-
trates fully autonomous driving (obstacle
avoidance) being performed without any hu-
man intervention by using the laser range-
finder and sonar sensors as selected sensory
modules. The laser range-finder and sonar
sensors are capable of detecting obstacles at
the heights of 0.9 and 0.7 meter; RISCbot
II is able to autonomously navigate through
obstacles using the Potential Field algorithm
for obstacle avoidance. In RISCWare, sensor
fusion is utilized to take the advantage of both
sensors’ outputs (i.e. laser range-finder and
sonar) and generates a faster, more optimal,
accurate and robust behavior compared to
pervious experiments.

7.9 Experiment 9: Fully Autonomous Driving

Mode (Obstacle Avoidance) with Human
Detection, Using a Microsoft Xbox Kinect,
A Laser Range-Finder, Sonar Sensors, and
RISCbot I (Speed Limit Set to 2)

Modules:

Sensory devices: Sonar, laser range-finder
and Xbox Kinect

Software application: Obstacle avoidance
and Human Detection

Platform: RISCbhot II (all directions are
permitted (i.e. North, South, East, West,
North-East, North-West, South-East, and
South-West), speed limit set to 2

Description/Results: This experiment illus-
trates fully autonomous driving (obstacle
avoidance) being performed without any hu-
man intervention by using the laser range-
finder and sonar sensors as selected sensory
modules. Furthermore, RISCbhot II is able to
detect human faces with human detection soft-
ware module using Xbox Kinect. The results
matched those of Experiment 8, with the addi-
tion of the human-detection capability via the
Xbox Kinect and human detection software
module, which is able to detect up to four
human faces in the same time. A sample of
RISCbot II behavior, an output of the face
detection module, and the configuration of
this experiment, are shown in Fig. 16.

8 Performance Results

Two metrics are used to evaluate the perfor-
mance of RISCWare: latency and throughput. A
series of stress tests have been performed, testing
different message sizes (16, 32, 64, 128, 256, and

Table 1 Latency and throughput of the RISCWare

PavilionDV6T Compaqnw9440

Latency 4.59 253
Throughput (8 bytes) 32.121 13.53
Throughput (16 bytes 64.365 28.206
Throughput (32 bytes) 129.189 55.376
Throughput (64 bytes) 259.485 113.305
Throughput (128 bytes) 518.183 226.536
Throughput (256 bytes) 1027.752 439.216
Throughput (512 bytes) 2036.389 877.325

@ Springer

J Intell Robot Syst

[opowr
Surjod uo
SOI[a1 31 90UTS BlEp
JI0je[nUIs ‘pozIfeIIudd pozIenuaddq
sy00lqo dace soniqedeo PAIOPISUOD ‘IOAIRS - JUAID
Axo1d SI 0qozZeD) Surpuey 9q UeD [9A9] UIeI)Su0d
9IN109)IYdIE ‘10)R[NWIS (7 j[ne} 9mpouw uo nq [eInjoaryore
SOX SOX SOX ON ON SOX LT -€ SOX SOX esragels JordxooN ‘erqeordde joN 1emonted oN IoKeld
‘Buruuerd pue
uornesiaeu
‘uornewnsd
‘uondoorad
‘uonendruewr
‘Aymqour
‘UonBUIPIOOD
‘Jonuod
uonjow 10§
syuouoduwod
uadAxoq onoqor
‘ddn ‘doL snoLrea 10y
90 Munddd sooejIoIuUl pUuR
‘OVL/ADV UOALIP suonoeISqe
‘(11S ++0) JUQAD {[OIIUOD juspuadopur
own Surururerdord ponquysip pue wojjeld (1oA1os
-[ear o1e JLIoUd3 PozZI[enuad 10§ JuaIp ‘elep
so[npour ‘suroped um3Ao uonejdepe PozI[e1}uddp
Sox A[renieq SOX JSOIN sox Aqenieq udisop OO A[UO sox SOX SOX syroddng AV RAR[7 AIVIVTID
MOTJ JUOAD
/eyep 10y
WSTURYOIUL
IoqLIOsqns
jroysiqnd
oum oY) pue MO[j suonoeIsSqe
[ear o1e Keld Snig [013U0D 10} juopuadopur
so[npow 9IM)O9)IYdIR WSTURYOW uoperd
Arenreg SOX A[renreq JSOIN oN oN -porofe] ON S9X oN SOX poseq-juoAg ‘s10Ae] 9 TR DSTI
SULIIM JUSWUOIAUD QW) UONBUIPIOOD 92INOS SoI3070UT09) Q0URIIO] [opoux [opowr
L1mMoog orweuA(q peINqIISI(T ey IoAeyog uadQ /SPIEpUEBIS SMOPUIA\ XNUI] Ioje[nuIs jnej [onu0) woIshg QuweN

[s1] eremorpprwt $O130qOI UTBW 9} JO SAINQLI)IE 9Y) Jo uostedwo) g IqelL,

pringer

Qs

J Intell Robot Syst

19qLIOSqNs
SOOIAIDS /1oysiqnd
odd ‘yIomawrery
‘piudLIo suornouny syIoMOWeI) poseq
ON SOX SOX SOX SOX SOX a8essoIN enred SOX SOX J0IdX9 JON PoIUQLIO 9FBSSIA juouodwo)) SOY
MO[J JUOAD
/eyep 10
WSIURYOIW
19qLIdSqQNS
/1oysiqnd S[00] 159
ay) pue /UOTIBpPI[BA
MO[J [01U0D ‘SyTomowrery
padojoaap padoroaap 10J WSIUBYOW ‘paseq
oN SOA SOA Surog ON SOA UQALIP-JUdAT SOX SOX SOA Surog IOAIIS/JUID) juouodwo)) So¥dO
(NSd)
[9POIA d1103ds
uLojie[d
‘(INId) 12POIN
juopuadopuy
uLojie[d
QIN)OANIYIIY
[opowt UQALI(] [OPOIN
Iojenuus juouodwo) “JIomowrery
SOTWRUAD ® SI -1¥ £q paseq paseq
ON SOA SN SOA ON SOA vadI0D SOX SOXA ¢ J¥HuedO payroddng -juouodwo)) uouodwo) ISt L uedO
SULIIM JUSWUOLIAUD oull} UONBUIPIOOd 9JINOS SAIFO[OUYI) OURIAO} [opowt [opow
ANIndag omueukq pAaINqLIsiq ey 101ARYeg uad() /SpIEpUBIS SMOPUIA\ XNUI'] J01R[NWIS Jneq [onuo) wo)sAg QuIeN

(penunuo)) g aqeL

pringer

As

J Intell Robot Syst

512 Bytes); the system was run for about an hour
and measured the end-to-end data packet latency
and the throughput. Two laptops are used for
the experiments: HP Pavilion dv6t (Pavilionv6t)
and HP Compaqnw9440 (Compaqnw9440). The
specifications of the PavilionDV6T are as follows:

— Processor: 2nd generation Intel(R) Dual
Core(TM) i7-2620M (2.7 GHz, 4 MB L3
Cache), with Turbo Boost up to 3.4 GHz

— Graphics: Intel(R) HD Graphics 3000

- RAM: 8 GB DDR3

The specifications of the Compaqnw9440 are as
follows:

— Processor: Intel Core 2 Duo T7200 (2.0 GHz,
4 MB L2 cache, 667 MHz FSB)

— Graphics: NVIDIA Quadro FX 1500M, 256
MB

- RAM: 2 GB (667 MHz) DDR2 SDRAM

Figures 17, 18, 19, 20, 21, 22, and 23 show
the throughput of different message sizes (16,
32, 64, 128, 256, and 512 Bytes), running on
PavilionDV6T. As shown in these Figures, the
throughput is doubled as the message size is
doubled. The summaries of the average latency
(measured in pSec.) and throughput (measured
in MBPS) metrics carried on PavilionDV6T and
Compaqnw9440 are shown in Table 1.

9 Technical Contributions

In [15], we described the architecture and some
important attributes for most of the existing ro-
botic middleware, such as Player, CLARALty,
ORCA, MIRO, etc. As described in [15]. Table 2
summaries and points out the main techni-
cal contributions and application significance of
RISCWare, compared to the existing middleware
frameworks.

10 Conclusions
In this work, the RISCWare framework is pro-
posed as a modular framework whose hardware

and software work together to automatically use
available sensing devices and assign resources to

@ Springer

perform the required task. Furthermore, the goal
is to be able to plug in new sensing devices or new
tasks and immediately be able to act on the task,
without complicated setup maneuvers. RISCWare
supports the PnP (Plug-and-Play) property and
allows changing the configuration of the control
flow and the data flow at runtime. Finally, some
experiments, performed on the RISCbot II mo-
bile manipulator, were described to evaluate the
RISCWare middleware.

The primary advantages of RISCWare plat-
form are: Software Modularity, Hardware Archi-
tecture Abstraction to hide the low-level device-
specific details of the device in order to provide
the developers with more convenient, standard-
ized hardware APIs; Platform Independence and
Portability to be able to run on any platform via
changing in the system’s configuration. Further-
more, the core of the middleware does not depend
on the specific device or software algorithm. In
addition, new hardware devices with the same
functionality can reuse the existing interfaces and
base classes of the already-defined hardware de-
vices; the user needs only to define the hardware-
specific functions for them. In RISCWare, hard-
ware devices and software work together to auto-
matically use available sensing devices and assign
resources to perform the required task. Further-
more, RISCWare allows the reconfiguration of the
sensors to be used in different tasks such as the
stereo camera, which can be used to produce 3D
range points and also raw images.

References

1. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote,
T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-
source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

2. Nesnas, I.: The claraty project: coping with hard-
ware and software heterogeneity. In: Brugali, D. (ed.)
Software Engineering for Experimental Robotics. Ser.
Springer Tracts in Advanced Robotics, vol. 30, chapter
3, pp- 31-70. Springer, Berlin, Heidelberg (2007)

3. Collett, T.H., MacDonald, B.A., Gerkey, B.P.: Player
2.0: toward a practical robot programming framework.
In: Proc. of the Australasian Conf. on Robotics and
Automation (ACRA). Sydney, Australia (2005)

4. Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G.:
Miro - middleware for mobile robot applications. IEEE
Trans. Robot. Autom. 18(4), 493-497 (2002)

J Intell Robot Syst

10.

11.

12.

. Michel, O.: Cyberbotics Itd. webots tm: professional

mobile robot simulation. Int. J. Adv. Robot. Syst. 1, 39—
42 (2004)

. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon,

W.-K.: RT-middleware: distributed component mid-
dleware for RT (robot technology). In: 2005 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2-6 2005, (IROS 2005), pp. 3933-3938 (2005)

. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic

software systems: from code-driven to model-driven
designs. In: International Conference on Advanced
Robotics, 22-26 2009, ICAR 2009, pp. 1-8 (2009)

. Alexei Makarenko, A.B., Kaupp, T.: On the benefits

of making robotic software frameworks thin. In: POn
the Benefits of Making Robotic Software Frameworks
Thin IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS’07), 29 Oct.—02 Nowv.
2007, San Diego CA (2007)

. Jang, C., Lee, S.-I., Jung, S.-W., Song, B., Kim, R., Kim,

S., Lee, C.-H.: Opros: a new component-based robot
software platform. ETRI J. 32, 646-656 (2010)
Jackson, J.: Microsoft robotics studio: a technical in-
troduction. IEEE Robot. Autom. Mag. 14(4), 82-87
(2007)

Kramer, J., Scheutz, M.: Development environments
for autonomous mobile robots: a survey. Auton. Ro-
bot. 22(2), 101-132 (2007)

Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Middleware
for robotics: a survey. In: 2008 IEEE Conference on
Robotics, Automation and Mechatronics, pp. 736-742,
21-24 Sept 2008

13.

14.

15.

16.

17.

18.

19.

20.

Mohamed, N., Al-Jaroodi, J., Jawhar, I.: A review of
middleware for networked robots. Int. J. Comput. Sci.
Netw. Secur. 9(5), 139-148 (2009)

Namoshe, M., Tlale, N., Kumile, C., Bright, G.: Open
middleware for robotics. In: 15th International Confer-
ence on Mechatronics and Machine Vision in Practice,
2008, M2VIP 2008, pp. 189-194, 2-4 Dec 2008

Elkady, A., Sobh, T.: Robotics middleware: a com-
prehensive literature survey and attribute-based bib-
liography. J. Robot. 2012, Article ID 959013, 15 pp.
(2012)

Elkady, A., Joy, J., Sobh, T., Valavanis, K.: A struc-
tured approach for modular design in robotics and au-
tomation environments. J. Intell. Robot. Syst. 72(1),
5-19 (2013)

Enea LINX Interprocess Communication (IPC):
Online: http:/www.enea.com/linx (2011). Accessed
1 Apr 2013

Swig: Website: http://www.swig.org/ (2011). Accessed
1 Apr 2013

Elkady, A., Joy, J., Sobh, T.: A plug and play mid-
dleware for sensory modules, actuation platforms and
task descriptions in robotic manipulation platforms.
In: Submitted to Proc. 2011 ASME International De-
sign Engineering Technical Conf. and Computers and
Information in Engineering Conf. (IDETC/CIE ’11)
(2011)

Elkady, A., Babariya, V., Joy, J., Sobh, T.: Modular
design and implementation for a sensory-driven mobile
manipulation framework. J. Intell. Robot. Syst. 1-27
(2010). doi:10.1007/s10846-010-9454-3

@ Springer

http://www.enea.com/linx
http://www.swig.org/
http://dx.doi.org/10.1007/s10846-010-9454-3

	Modular Design: A Plug and Play Approach to Sensory Modules, Actuation Platforms, and Task Descriptions for Robotics and Automation Applications
	Abstract
	Introduction
	Related Work
	RISCWare Features
	RISCWare Middleware
	RISCWare Communications
	Configuration Management

	Namespace Directory Service
	Experiments
	Experiment 1: Manual Driving Mode, Using a Wireless Camera and RISCbot II (Initial Speed = 2)
	Experiment 2: Manual Driving Mode, Using a Wireless Camera, a Laser Range-Finder and RISCbot II (Initial Speed = 2)
	Experiment 3: Semi-Autonomous Driving Mode (Manual Driving and Obstacle Avoidance), Using a Wireless Camera, A Laser Range-Finder and RISCbot II (Initial Speed = 2)
	Experiment 4: Fully Autonomous Driving Mode (Obstacle Avoidance), Using a Laser Range-Finder and RISCbot II (Speed Limit = 2)
	Experiment 5: Fully Autonomous Driving Mode (Obstacle Avoidance), Using a Laser Range-Finder and Limited RISCbot II (North-East, and North-West Directions are Prohibited, Speed Limit Set to 3)
	Experiment 6: Fully Autonomous Driving Mode (Obstacle Avoidance), Using a Laser Range-Finder and Limited RISCbot II (North, North-East, and North-West Directions are Prohibited, Speed Limit Set to 3)
	Experiment 7: Fully Autonomous Driving Mode (Obstacle Avoidance), Using Sonar Sensors and RISCbot II (Speed Limit Set to 2)
	Experiment 8: Fully Autonomous Driving Mode (Obstacle Avoidance), Using a Laser Range-Finder, Sonar Sensors and RISCbot II (Speed Limit Set to 2)
	Experiment 9: Fully Autonomous Driving Mode (Obstacle Avoidance) with Human Detection, Using a Microsoft Xbox Kinect, A Laser Range-Finder, Sonar Sensors, and RISCbot II (Speed Limit Set to 2)

	Performance Results
	Technical Contributions
	Conclusions
	References

