Discrete Event and Hybrid
Systems in Robotics and
Automation: An Overview

Discrete event and hybrid systems modeling has been used extensively
in automation, robotics, and manufacturing applications. Different
frameworks for dynamic supervisory controllers are used in flexible
manufacturing systems (FMS) and automated processes. This article
presents an overview of some existing strategies that are used to
control systems in real-lime based on sensory data.
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systems

he underlying mathematical representation of complex

robotic and manufacturing computer-controlled systems
is still insufficient to create a set of models which accurately
captures the dynamics of the system over the entire range of
system operation. We remain in a situalion where we must
trade off the accuracy of our models with the manageability
of the models, Closed-form solutions of mathematical mod-
els are almost exclusively limited to linear system models.
Computer simulation of nonlinear, hybrid and discrete-
event models provide a means for off-line design of robotic
control systems. Guarantees of syvstem performance are
limited to those regions where the robustness conditions
apply. These condilions may not apply during startup and
shutdown or during periods of anomalous operalion.
Attempts have been made to model low- and high-level
system changes in automaled and robotic systems as
discrete event dynamic systems (DEDS) and hybrid systems.

Several attempts to im-
prove modeling capabilities
are focused on mapping the
continuous world into a dis-
crete one. However, repealed
results are available which
indicate that large interactive
systems evolve into states
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where minor evenls can lead Lo a calastrophe. Discrete event
and hybrid systems have been used in the manufacturing and
automation domains to model system state changes within a
process. Timed and untimed Pelri nets and state aulomata, in
addition to markovian, stochastic, perturbation and other
muodels, have been used extensively to model and control
automated manufacturing systems. High-level DEDS con-
trollers have also been used to guide the behavior of rabots
based on sensory oulputs,

As industries move closer to implementing agile-manu-
facturing concepts the need for automatic and re-program-
mable controllers will increase rapidly [1,2]. The productivity
of flexible manufacturing systems (FMSs) in such industries
will be measured in terms of: (i) device flexibility—use of re-
configurable and re-programmable machines for part pro-
duction, and robotic manipulators for part transfer; and, (ii)
system flexibility—use of a supervisory controller to re-pro-
gram Lhe operation of the
FFMS, in order to accommo-
date alternate production
routes when needed [3].

Agile manufacturing is pri-
marily characterized by “the
ability to rapidly respond lo
continuously changing cus-
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tomer requirements.” Therefore, it is assumed that in an
I'MS, parts could be re-routed in an on-line manner in
response Lo such changes, as well as in response to unexpect-
ed device failures or deadlocks, without intervention from an
external agent,

A centralized supervisory controller for an FMS must per-
form the following three tasks: (1) monitor the behavior of
the system using sensory feedback; (2) evaluate phenomena in
accordance with the governing supervisory-control stralegdy;
and (3) enforce the common strategy through the execution
of the device programs [4]. The design of a supervisory con-
troller entails the formulation of control laws, and the synthe-
sis of supervisors, The laws specify how the supervisor is to
react Lo the behavior of the FMS, the goal being to have some
production specifications satisfied within the standing con-
trol-enforcement constraints.

From a planning and control perspective, an FMS for
diserete production can he seen as a dynamic system whose
stales evolve according to the occurrence of abrupt physical
events, thus exhibiting the characteristics of a discrete-
event system (DES), Such systems are event driven, dis-
crete in time and space, usually asynchronous, and typically
non-deterministic.

In the past, DESs have usually been sufficiently simple that
intuitive or ad-hoc control solutions have heen adequate [5].
However, the increasing complexily of Lhese systems has cre-
aled a need for formal approaches for their analysis and con-
trol. The essential distinction between an ad-hoe approach
and a formal approach is that the latter provides a mathemati:
cal framework (e.g., algebraic set theory, formal language the-
ory, etc.) for the farmulation and synthesis of the
supervisorv-control laws. With the use of mathematical tools
developed within the formal approach, the synthesized super-
visory-control law is (mathematically) proven Lo be free of
conflict and deadlock. Petri-net theory |6,7], real-time tempo-
ral logic [8,9] and controlled automata [10] are formal
approaches that have been commonly applied to the analysis
and control of DESs.

Because of the non-deterministic nature of behavior of a
manufacturing system, its supervisory control must be car-
ried out in a closed loop, The above-mentioned traits compli-
cate and greatly increase the complexity of the
supervisory-control implementation. Thus, the control of
even a moderately complex system can easily require an
immensely large DES strategy. In [11], it has been shown
that, when solving basic control-synthesis problems, although
they have been noted to be of polynomial complexity in the
number of states, the number of slales in'a practical system
can be exponential in the number of constituent processes.

To some extent, this problem of excessive states can be
mitigated through modular synthesis, use of aggregation,
decentralization, and hierarchies |12]. However, these tech-
nigues are of limited use, since they draw on special charic-
teristics of the numerous control objectives, In a complex
environment with many interdependencies between ohjec-
tives, these techniques will not be sufficient for reducing the
number of states Lo manageable numbers,

If it is not possible to construct, for a given set of control
objectives, a DES supervisory controller which has a manage-
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able number of states, it might be possible to create a split
approach that uses some alternative mechanism in addition
to a DES supervisory controller. This second mechanism
would relieve the DES supervisory controller of the need for
so many states by either (i) taking on the responsibility for
some of the control objectives, or (i) asserting control when-
ever events diverge from the (reduced number of) states of the
DES supervisory controller [4].

A second problem to be addressed is the selection of hard-
ware that can be easily re-programmed on-line. The utiliza-
tion of personal computers (PC), augmented with
data-acquisition and interface devices, as well as programma-
ble-logic-controller (PLC) technology, have been proposed in
the literature for the execution of control strategies generated
on-line. A primary reason for the selection of PLCs over PCs is
that they are standard, rugged manufacturing hardware wide-
ly used in factory automation.

APPLICATIONS OF AD-HOC APPROACHES

TO FMS CONTROL

In [5], a workcell-management concept is introduced for
the integration of workcell-programming, workcell-coordi-
nation and error-recovery issues, A manufacturing-work-
cell programming language is also proposed. Its basic
features permil the evaluation of mathematical, relational
and logical expressions, the assignment of variables, the
conditional and unconditional branching of program flow,
and looping. The management system was tested using
multiple PCs in a token-ring environmenl to simulale a
manufacturing workeell,

In [13], the conceptual design and partial implementation
of an on-line supervisor for a robolic assembly workeell is
deseribed. The proposed supervisor is defined as an on-line
system responsible for the real-time monitoring of the assem-
bly process. The praposed system was implemented on a conm:
puter workstation connected divectly to an assembly workeell.
In [14], a knowledge-based on-line system is proposed for
scheduling, execution monitoring, and failure diagnosis and
recovery for a flexible-assembly-cell environment. It is a hier-
archical system with three levels: a task level, u functional
level and an action level, For the implementation, a PC was
used to host the supervisory controller, which was in turn
connected to dedicated microprocessors ulilized Lo control
the workeell devices.

A common shortcoming of the above supervisory-con-
trollers is their lack of formalism to verify and ensure correct-
ness of the control strategies (i.e., free of conflict and of
deadlock),

APPLICATION OF FORMAL APPROACHES

TO FMS CONTROL

Both Petri-nel and controlled-autormata DES-modeling tech-
niques have been utilized for PC-based implementations of
supervisory control [15-18]. In [7], an extended Petri-net
notation 1s introduced for the modeling and control of a man-
ufacturing system. In [15, 16], a scheduling and control sys-
tem for manufacturing workeells utilizes Petri nets for the
local control of the workeell devices at the machine level in a
hierarchical system, The modeling and performance evalua-
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tion of Petri-net models applied to manufacturing workeells
are discussed in |17]. In |18], an augmented Limed Petri-nel
system is introduced for handling failures within a robotic
fMexible-assembly workeell.

A Petri-net operating system has also been developed as
the basis for a controller, [19, 20]. A Petri-net description lan-
guage is proposed lo converl a graphical (Petri-net) model of
a manufacturing system into a textual representation. The
output of the conversion process is a set of (English) state-
ments, where for each state and transition the corresponding
preceding and following states and transitions are listed as a
single statement, To supervise the workeell, the Petri-net
operating system resided in a PC, that was in turn interfaced
to other PCs which acted as local controllers of the machines
in the workcell.

In a rare PLC-based controller example, Petri-net model-
ing is used as an intermediate step in moving from a high-
level description of a control-strategy Lo Lthe Boolean format of
the corresponding ladder-logic description [21]. The conver-
sion from Petri-net to ladder-logic code is performed by a set
of transformation rules defined in the work.

One of the two controlled-automata-based implementa-
Lions reported so far has been for the supervisory control of
an integrated-circuit wafer-fabrication system [22]. The
supervisory controller consists of two parts: a supervisor and a
controller, The role of the supervisor is 1o ensure that safety
constraints are enforced. The role of the controller is to direct
the system toward the desired goal, that is, to accomplish a
specific set of tasks. [n the implementation of the controller, a
dedicated computer workstation was utilized and directlv con-
necled Lo the device.

As another real implementation example, controlled
automata is utilized in [3] for the supervisory control of a
robotic manufacturing workeell. The control strategy s devel-
aped based on the frarmework presented in [10], automatically
translated into a ladder-logic code, and subsequently down-
loaded into the PLC. The PLC program was then executed to
control the workcell devices.

Some DES-type controllers have also been targeted for the
control of power plants using learning automata [23], satellite
stabilization through inductive learning [24], and flexible-
wing aircrall control using fuzzy logic [25].
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