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Abstract 
 

This work first reviews an already-developed, existing deterministic 

parallel algorithm [1] to compute the  complete histogram of an image in 

optimal number of steps  ( nlog ) on a hypercube architecture and utilizing 

memory space on the order of )log( 2

1

xxO  where x  is the number of gray 

levels in the  image, at each processing  element. The paper then 

introduces our improvement to this algorithm's memory requirements by 

introducing the concept of randomization into the algorithm. 

  

1. Introduction 
 

The first algorithm [1] to be reviewed in this paper is concerned with the task of 

computing the complete histogram of n gray-level values in nlog  steps. The algorithm is 

described for hypercubes and computes the complete histogram in nlog  time 

independent of the range of gray level values. The computation of the complete 

histogram of n  such values takes place in a series of nlog  steps; after which, the 

histogram for value i  can be found in the lowest-addressed processor whose address ends 

in i . The algorithm makes use of the association of suffixes of data values of increasing 

width with suffixes of processor addresses. We shall begin by defining the histogram of 

an image and the uses of the histogram in different image processing applications, then 

we shall define the SIMD hypercube multiprocessor and describe its interconnections. 

The algorithm in [1] will be reviewed after that. Finally, we present an improvement to 

this algorithm’s memory requirements via the usage of randomization. 

 

2. The gray level histogram. 
 

One of the simplest and most useful tools in digital image processing is the gray level 

histogram. The gray level histogram is a function showing, for each gray level, the 

number of pixels in the image that have that gray level. The abscissa is the gray level and 
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the ordinate is the frequency of occurrence (number of pixels). While the histogram of 

any image contains considerable information, certain types of images are completely 

specified by their histograms. When an image is condensed into a histogram, all spatial 

information is discarded. There are many uses for the gray level histogram. One 

important use is in digitizing parameters, which is due to the fact that the histogram 

indicates whether or not an image is properly scaled within the available gray level. 

Another important use is in boundary threshold selection, as contour lines provide an 

effective way to establish the boundary of a simple object within an image. The contours 

may be, for example, the 'dip' between two peaks in the histogram in the case of a light 

area within a dark area or vice versa. The area and the integrated optical density of a 

simple object can be computed from its image histogram too. 

 

3. The SIMD hypercube microprocessor. 
 

A hypercube of dimension k has k
2 nodes and k

k 2 edges. A hypercube of dimension 

2 is analogous to a square, the hypercubes of dimension 3d  can be recursively defined 

as obtained from two hypercubes of dimension ( 1d ) each, by connecting 

corresponding nodes of the two hypercubes. That is, two cells  share a direct connection 

if and only if their corresponding hypercube vertices are connected by a hypercube edge. 

Furthermore, we can see that two cells will share a direct connection if and only if their 

addresses differ in exactly one bit position (i.e., one in each dimension). In the SIMD 

multiprocessor model (single-instruction, multiple data), which is our model, all 

processing elements execute a sequence of instructions, sent from one controller. 

 

4. The Algorithm. 
 

This section explains and reviews the algorithm introduced in [1], so that the reader 

of this article can follow later the development of our own contribution, which is namely, 

randomizing the algorithm. The histogram which is to be computed will be represented as 

a set of ordered pairs, each pair will contain an index (represented in binary; for example, 

 

012321
,,,,.....,, iiiiii

mm 
will represent an index of length m bites, which implies that the 

maximum number of gray levels allowed is m
2 ), and a count, which is the histogram 

value of the corresponding index (that is the number of pixels which have the index value 

as its gray level). 

 

4.1. Initial configuration. 

 

Initially each processing element (PE) in the hypercube include one and only one 

pair, which is in fact one pixel value, which means that the count component of the pair 

have the value "1" throughout the hypercube. This may be considered as if each PE of the 
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hypercube contains a histogram consisting of single pair, which is obtained by pairing the 

gray level value (index) in the cell with the count "1".  

 

The goal may be considered then to 'combine' all those histograms in different cells to 

form the complete histogram of the image, which is to be distributed in some reasonable 

way throughout the hypercube in order to be retrieved easily. 

 

4.2. The basic idea behind the algorithm in [1]. 

 

The basic idea behind the algorithm is very simple, it is in fact the idea of 'combining' 

all the values distributed throughout a hypercube into a single  processing element in 

nlog  steps, where n  is the number of cells within the hypercube multiprocessor. 

Combining the set of values in the hypercube is a very simple and standard procedure. It 

can be described using a simple algorithm consisting of a loop that is to be performed k  

times, where k is equal to the quantity  nlog  . During iteration number j  the value that 

is stored in the processor 

 

0121121
,,,..,,1,,...,, aaaaaaa

jjkk 
 

 

is to be sent to the processor 

 

             
0121121

,,,..,,0,,...,, aaaaaaa
jjkk 

 

 

which is done in exactly one time step, as this is a hypercube edge. Then, combined 

with the value stored in the latter processor, it can be seen that after k  steps the 

'combination' of all the elements that were originally distributed throughout the 

hypercube will be found in a single processor namely the processor 

 

012321
0,0,0,.....,0,0,0

 kkk
 

 

 

4.3. The problems arising when using the basic algorithm. 

 

In [1], it can be readily seen that the previous sort of algorithm can be readily applied 

to a large class of problems, namely the class of problems where the amount of storage 

that is required to store the combined value after the current iteration does not increase or 

increase significantly, but does so with a slow rate as more values are combined. If this 

was not true, the amount of storage required would be in fact exponential. One such 

problem may be the addition problem. For the problem of combining histograms, this 

basic algorithm will not be suitable, because the output of the operation of combining two 

histograms may be twice as large as either of the original histograms.  The consequence 
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of this will be the exponential growth in the storage required for the histogram in a given 

processing element. 

 

 

4.4. The description of the algorithm 

 

The main idea behind the algorithm that the authors developed in [1] is to try to 

alleviate the problem with the basic algorithm of the exponential growth in memory 

requirement at the processing elements by allowing the histogram information to remain 

distributed to a certain degree while still aggregating it in a useful way in a series of 

nlog  steps. This is to be performed using the following algorithmic steps, presented in 

[1]: 

 

The algorithm is still a loop with k  iterations with nk log .  At each iteration j  of 

the loop during the first m  steps, the following is to be performed. ( n  number of PE's; 

i.e., number of pixels, logm (number of gray levels)) 

 

All the pairs with index (in binary): 

 

         
011121

,,...,,0,,...,, iiiiii
jjmm 

 

 

    which are in a processing element in the hypercube whose address is: 

 

        
011121

,,...,,1,,...,, aaaaaa
jjkk 

 

 

    are sent to the PE in the hypercube whose address is: 

         

        
011121

,,..,,0,,...,, aaaaaa
jjkk 

 

 

At the same time, in a complementary fashion, all pairs with the index: 

 

         
011121

,,...,,1,,...,, iiiiii
jjmm 

 

 

    which are in a processing element in the hypercube whose address is: 

 

         
011121

,,...,,0,,...,, aaaaaa
jjkk 

 

 

    are sent to the PE in the hypercube whose address is: 

 

        
011121

,,...,,1,,...,, aaaaaa
jjkk 
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At the very first iteration of the loop, every pair in the hypercube whose index ends 

with a zero, which is in a PE whose address, is: 

 

1,,....,,
121

aaa
kk 

 

 

will be send to the PE  0,,....,,
121

aaa
kk 

 also any pair with an index ending in a one, 

which is in a PE whose address is: 

 

 

 

will be send to the PE    1,,....,,
121

aaa
kk 

 

During the second iteration, every pair in the hypercube whose index ends with a 

,,0
0

i  which is in a PE whose address is: 

 

0221
,1,,.....,, aaaa

kk 
 

  

will be send to the PE  
0221

,0,,.....,, aaaa
kk 

, also any pair with an index ending in a 

,,1
0

i  which is in a PE whose address is: 

 

     
0221

,0,,.....,, aaaa
kk 

 

 

will be send to the PE    
0221

,1,,.....,, aaaa
kk 

 

 

It can be readily noticed that some use is being made of the association of suffixes of 

the indices and suffixes of the PE addresses. After the values are sent, whenever two 

pairs with the same index (i.e., two pixels with the same gray level) are collected in the 

same PE, they are to be combined to form one pair with the same index and with the 

count value equal to the sum of count values of each individual pair, thus forming the 

histogram. At first glance, it might seem that the problem of the exponential growth in 

memory requirements at each PE still exists, due to 2 facts: 

 

1. The number of bits required for the count increases by one each time a 

combine is performed. 

 

2. The possibility that many pairs with indices which are the same in the last 

several bits may be initially located in processing elements such that they 

all happen afterwards to gravitate to a single cell, which implies that the 

possibility for exponential growth in the number of pairs stored in a 

particular processing element still exists.  

 

However, when one takes a closer look at the operation of this algorithm, the 

situation will turn to be much better than it first appeared to be. Regarding the first 

concern - the increase of the number of bits needed for the count by one after each 

iteration - it can be seen that there is no need to store after iteration j  the last 1j  

0,,....,,
121

aaa
kk 
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bits of any index, since these bits will at that time be given by the last 1j  bits of the 

processing element address which contains that index. It is true that the number of 

bits needed to store the count will increase by one after each iteration but at the same 

time the number of bits required to store the index will decrease by one. Thus, the 

total number of bits required to store a pair will remain a constant throughout the 

whole algorithm. The value of this constant is simply equal to the number of bits 

required to store the gray level plus one (i.e.: ( 1m )) The argument about the 

exponential growth in the number of pairs to be stored at each processing element 

will also be found to be not exactly the case, and this is discussed by the authors in 

details in [1]. 

 

4.5. The formal algorithm 

 

The following is the final algorithm in [1], described in pseudo-code like language. 

 

Define n  number of nodes in hypercube (number of pixels). 

    

       nk
2

log . 

 

       x  number of gray levels. 

 

       xm
2

log . 

 

 For 0j to ( 1m ) do 

 

(***)  Send all the pairs with index 

 

011121
,,....,,0,,.....,, iiiiii

jjmm 
 

 

     which are in a processing element in the hypercube whose address is 

 

           
011121

,,...,,1,,...,, aaaaaa
jjkk 

 

 

     to the PE in the hypercube whose address is 

         

011121
,,...,,0,,...,, aaaaaa

jjkk 
 

 

   In parallel, send all pairs with the index  

 

011121
,,....,,1,,.....,, iiiiii

jjmm 
 

 

     which are in a processing element in the hypercube whose address is 
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011121
,,...,,0,,...,, aaaaaa

jjkk 
 

 

     to the PE in the hypercube whose address is 

 

011121
,,...,,1,,...,, aaaaaa

jjkk 
 

 

  If two pairs have the same index are collected in the same PE then they are to be 

combined to form one pair with the same index and with the count value equal to the sum 

of count values of each individual pair ; 

 

 end For ;  

 

  If k  = m  then STOP else 

 

(###) For mj   to ( 1k  ) Do 

 

    Send the count value stored in the PE whose address is 

 

011121
,,...,,1,,...,, aaaaaa

jjkk 
 

 

      to the PE whose address is 

 

011121
,,...,,0,,...,, aaaaaa

jjkk 
 

 

      sum both count values and leave the combined histogram in the latter PE. 

 

    end For ; 

 

  end If. 

 

The algorithm assumes that the number of bits to represent the gray levels are never 

more than the number of bits required to represent the number of pixels in an image, 

which is a logical and true assumption for nearly all realistic situations in computer vision 

applications. 

 

4.6. Complexity analysis of the deterministic algorithm. 

 

It can be seen that with regards to the time complexity of the algorithm, that the 

algorithm runs exactly in nlog  loop iterations, the time for each loop iteration may be 

considered as one time step (including routing and the combining operations performed 

within a processing element), thus it is a nlog  time complexity process. With regards to 

space complexity, the maximum space required at a single PE will be an )2( 2

c

O space 
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per cell where c  is the number of bits required to store one of the histogram domain 

values. 

 

To be more specific, the algorithm requires 

 

       
2

log

2

2

2)1(log

x

x   

 

space per PE where x  is the discretized number of gray levels.  

  

5. Comments about the deterministic algorithm 
 

The presented algorithm in [1] describes an intelligent approach to solving the  

problem of finding the histogram of an image using a popular parallel architecture in a 

number of steps equal to the diameter of the hypercube ( nlog ), which is the best 

complexity that can be hoped for. The algorithm makes use of the association of data 

values (gray level values) and PE addresses to keep a growing collection of values 

distributed so that their growth is manageable. The space complexity as described above 

is )2( 2

c

O . It may be possible to reduce the space by the use of some encoding 

techniques during the storage of histograms that result while iterating. However, the 

algorithm would then have to be modified accordingly and its behavior may become 

more complicated. The algorithm works nicely for the cases when km  , as the formal 

description of the algorithm imply. 

 

6. The Randomized version of the algorithm 
 

A randomized algorithm is best described as an algorithm where some of the 

decisions are made based upon the outcome of coin flips. The idea is to prove that the 

algorithm will behave in a certain manner with high probability. In our problem, we are 

concerned with proving that randomizing the algorithm will make the memory 

requirements at each processing element less than those for the original algorithm with a 

high probability. Typically, we mean a probability a
n


 1  for any 1a . Generally 

speaking, we can divide randomized algorithms into two classes. The first class is one in 

which the output is correct with high probability and is guaranteed to use a certain 

amount of resources. In the second one the algorithm is guaranteed to produce a correct 

output, using a certain amount of resource with a high probability. The first class is called 

a "Monte Carlo" algorithm, the second is called a "Las Vegas" algorithm, our new 

algorithm is of the "Las Vegas" type. 
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7. The Randomization Scheme. 
 

The randomization scheme we describe is basically a method to change the step 

marked (***) in the old algorithm to be a randomized routing step. This is instead of 

sending all the pairs to the specific processor                 

 

011121
,,...,,0,,...,, aaaaaa

jjkk 
 

 

we send them randomly in a first phase to the jk   processors ( c  means 

complement) 

 

        (1)    
011121

,,...,,1,,...,, aaaaaa
jjkk 

 

 

        (2)    
011121

,,...,,1,,...,, aaacaaa
jjkk 

 

 

                                      | 

                                      | 

 

      ( 1 jk )  
011121

,,...,,1,,...,, aaaacaa
jjkk 

 

 

       ( jk  )  
011121

,,...,,1,,...,, aaaaaca
jjkk 

 

 

and then, a second phase, sends all 'misplaced' pairs ; i.e., pairs with a zero in their 

j th position in PE's 2  ( jk  ) to the proper PE's 

 

        ( '2 )   
011121

,,...,,0,,...,, aaacaaa
jjkk 

 

 

                                      | 

                                      | 

 

      (  '1 jk )  
011121

,,...,,0,,...,, aaaacaa
jjkk 

 

 

       (  'jk  )   
011121

,,...,,0,,...,, aaaaaca
jjkk 

 

 

Note that this scheme complies with the idea behind the original algorithm regarding 

that the suffixes of the indices of the pairs is the same as the suffixes of the processing 

elements addresses, with the advantage that the pairs are dispersed within the hypercube 

more than before. 
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8. Probabilistic Analysis of Memory Requirements. 
 

An analysis of the memory locations required at each PE is to follow. The analysis is 

done for a specific processing element [ y ] at the first step of the randomization 

procedure, the same analysis could be applied to all PE's within the hypercube without 

loss of generality, the same method could then be used for the following iterations till 

1 mj . The fact that the distributions used to calculate the number of pairs that are 

expected to be at a certain processor (in the probability tree) are binomial distributions 

and that the sum of jk   such distributions is still a polynomial random variable could 

be applied to use Chernoff's lemma. Assume X  is the random variable of the number of 

pairs (memory locations needed), and m is the expected value we calculated, then: 

 

                            XXE   

 

       Implies (since X  is polynomial)   that the Probability (  mepsilonX  1 ) 

                           

                      is 







 2

2
epsilon

m

e <<   
a

n


     where 1a  

 

Which satisfies that the memory requirements are less than m  with a probability  
a

n


 1 , for any 1a , as described before in the randomization criteria. 

 

9. Complexity analysis of the randomized algorithm 
 

It could be clearly seen that the memory requirements has decreased significantly 

when applying this randomization scheme. The number of bits for every pair is still equal 

to 1log
2

x  at every time during the iterations. Due to the 'balance' we discussed in the 

probabilistic analysis, the number of pairs will always be close to a constant. Even if the 

number of pairs increased to be proportional to ( x
2

log ), this will definitely be better than 

x . One may argue that sending the pairs to more than one processor for randomization 

purposes will increase the time complexity to be more than O( nlog ) steps, but this is not 

true because the number of pairs will always be close to a constant as we proved. Thus, 

the total memory requirements will be O( )log(loglog
22

xnxC  ) bits.  

 

The second term is for the count increase by one for the loop (###) after the index 

suffix is scanned for all the PE's. The time complexity remains O( nlog ). As an example, 

for 8256256   images that we used in the original algorithm the memory requirements 

were 144 bits for each PE. For the randomized algorithm, the memory requirements will 

be equal to 

                    256log65536log1256log
222

C  
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I.E., 89 C , which, if C was even equal to x
2

log , will  be equal to 80 bits only for 

each PE with very high probability and the effect will be more when the number of gray 

levels in an image is more. 

 

 

10. Summary and Comments 
 

The presented randomized algorithm describes a method of sound improvement with 

regards to memory requirements when compared to the deterministic algorithm. The new 

memory requirements could be used at each PE and one can be sure that they will suffice 

with very high probability. Randomized algorithms provide lower bounds for resources 

like time and memory than those provided by deterministic algorithms in many cases, 

especially in routing and routing-related problems. The time complexity remains optimal 

and of the order of the diameter of the hypercube. 
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