
J Intell Robot Syst (2013) 72:5–19
DOI 10.1007/s10846-012-9798-y

A Structured Approach for Modular Design in Robotics
and Automation Environments

Ayssam Elkady · Jovin Joy ·
Tarek Sobh · Kimon Valavanis

Received: 11 May 2012 / Accepted: 10 December 2012 / Published online: 15 January 2013
© Springer Science+Business Media Dordrecht 2013

Abstract In this paper, the RISCWare frame-
work is proposed as a robotic middleware for
the modular design of sensory modules, actua-
tion platforms, and task descriptions. This frame-
work will be used to customize robotic platforms
by simply defining the available sensing devices,
actuation platforms and required tasks. In addi-
tion, this framework will significantly increase the
capability of robotic industries in the analysis,
design, and development of autonomous mobile
platforms. RISCWare is comprised of three mod-
ules. The first module encapsulates the sensors,
which gather information about the remote or
local environment. The second module defines the
platforms, manipulators, and actuation methods.
The last module describes the tasks that the ro-
botic platforms will perform such as teleoperation,

A. Elkady (B) · J. Joy · T. Sobh
School of Engineering, University of Bridgeport,
Denver, CO 80208, USA
e-mail: ayssam.elkady@gmail.com

J. Joy
e-mail: jovinj@gmail.com

T. Sobh
e-mail: sobh@bridgeport.edu

K. Valavanis
Electrical and Computer Engineering, University of
Denver Tampa, FL 33620, USA
e-mail: kimon.valavanis@du.edu

navigation, obstacle avoidance, manipulation, 3-D
reconstruction, and map building. The objective is
to design a middleware framework to allow a user
to plug in new sensors, tasks or actuation hard-
ware, resulting in a fully functional operational
system. Furthermore, the user is able to install and
uninstall hardware/software components through
system lifetime with ease and modularity. In ad-
dition, when hardware devices are plugged into
the framework, they are automatically detected by
the middleware layer, which loads the appropriate
software and avails the device for applications
usage. This automatic detection and configuration
of devices make it efficient and seamless for end
users to add and use new devices and software
applications. Several experiments, performed on
the RISCbot II mobile robot, are implemented to
evaluate the RISCWare framework with respect to
applicability and resource utilization.

Keywords RISCWare · Middleware ·
Plug and play · Teleoperation · Face detection ·
Face recognition · Modular design ·
Architecture · RISCbot II

1 Introduction

Robotic middleware is a software architecture
represented by an Application Programming In-
terface (API), which is a set of specifications that



6 J Intell Robot Syst (2013) 72:5–19

developers should follow while writing their own
code to guarantee software portability between
different vendor platforms. Robotic middleware,
which is an abstraction layer residing between the
operation system and the software applications,
is designed to manage the heterogeneity of the
hardware, improve software application quality,
simplify software design, and reduce development
costs.

RISCWare is developed to support different
sensory devices, actuation platforms, and soft-
ware applications; in addition, it is available for
different programming languages. It is designed
to be a modular, efficient, flexible, platform-
independent middleware platform. Furthermore,
the components (software and hardware) can be
replaced before or during runtime. The flexible
property of RISCWare enables a third party to
design self-configuring modules, and the Plug and
Play (PnP) property of the RISCWare gives the
robot’s user the ability to plug in a component,
which the RISCWare then recognizes. One of
the most desirable characteristics of RISCWare is
the resource-efficient transmission schemes that
achieve the best utilization of available network-
ing resources. The unitization of the network is
a very important issue because the sensory de-
vices generate many small messages on a regular
basis.

RISCWare is implemented as a messaging
system used to communicate between any compo-
nent (sensory device, actuation platform and soft-
ware application) at any desired time. RISCWare
allows two or more components to exchange in-
formation in the form of messages. Using mes-
saging, services can be invoked from software
applications and hardware devices. We chose to
implement RISCWare as a messaging system be-
cause messaging provides a high degree of de-
coupling between components, so it plays a key
role in the integration of heterogeneous systems.
The components can be abstracted and decou-
pled in such a way that they can be replaced
with little or no knowledge by the other com-
ponents. In addition, messaging offers the ability
to process requests asynchronously to increase
the performance of the system and reduce system

bottlenecks. RISCWare ensures that messages are
properly distributed among applications. Further-
more, it provides fault tolerance, load balancing,
scalability, and transactional support for applica-
tions that need to reliably exchange large quanti-
ties of messages. Parallel processing in RISCWare
is achieved by introducing multiple message re-
ceivers that can process different messages simul-
taneously.

We are proposing the implementation of a
framework (RISCWare) for modular design,
which is comprised of three modules. The first
module encapsulates the sensors that gather in-
formation about the remote or local environment.
The second module defines the platforms and
actuation methods. The last module describes the
tasks that the platforms will perform, such as
teleoperation, navigation, obstacle avoidance, ma-
nipulation, 3-D reconstruction and map building.

Fig. 1 A prototype of the RISCbot II



J Intell Robot Syst (2013) 72:5–19 7

This modular design allows for easy customization
of applications that require different sensor tech-
nologies, resolutions and spectral sensitivities.

We have built a platform (RISCbot II, shown in
Fig. 1), which consists of a comprehensive sensor
suite. RISCWare is designed to allow for modular
capabilities, including a variety of sensory mod-
ules (software and hardware), methods to define
tasks in a seamless manner, and finally, the ca-
pability to define various actuation and manipu-
lation platforms.

Section 2 introduces prior work, Section 3
presents the features of RISCWare, and then the
architecture and some case studies of RISCWare
are presented in Sections 4 and 5. RISCWare
components are described in Section 6. Section 7
evaluates the RISCWare framework with respect
to “A greeting Application”. Finally, Section 8
presents a summary of the work and draws some
conclusions.

2 Related Work

There are several other robotics software plat-
forms available, such as Robot Operating System
(ROS) [1], CLARAty [2], Player [3], Miro [4],
Webots [5], RT-Middleware (RTM) [6] SmartSoft
[7], ERSP [8], Orca [9], OPRoS [10], and Mi-
crosoft Robotic Studio [11]. A survey of robot de-
velopment environments (RDEs) by Kramer and
Scheutz [12] described and evaluated nine open
source, freely available RDEs for mobile robots.
In [13, 14], an overview study of robot middleware
is provided. Finally in [15], some freely avail-
able middleware frameworks for robotics were
addressed, including their technologies within the
field of multi-robot systems.

In [16], we outlined the architecture and some
important attributes, with the comprehensive set
of appropriate bibliographic references that are
classified based on middleware attributes for most
of the existing robotic middleware, such as Player,
CLARAty, ORCA, MIRO, and etc. Further-
more in [16], we present a literature survey and
attribute-based bibliography of the current state-
of-the art in robotic middleware design.

3 Features

RISCWare is designed to provide the following
features:

1 Modularity
2 Open Source
3 Real-time System
4 Plug and Play, and Dynamic Wiring: The

software and hardware components can be
downloaded, installed and configured at or
before run-time.

5 Easy to Use
6 Authentication, Authorization and Secure

Communication: Authentication is the mech-
anism to provide a way of identifying the user
of the systems (maybe by having the user
enter a valid user name and password). Af-
ter the authentication process, authorization
is required to determine what types or re-
sources, services and access level a particular
authenticated user is permitted. The secure
communication is performed by encrypting
the messages to prevent eavesdroppers from
spying on the messages.

7 Hardware Abstraction: Hides the low-level,
device-specific details of the device in order
to give the developers more convenient, stan-
dardized hardware APIs.

8 Algorithm and Platform Independence: It
should be possible to develop each algorithm
in isolation, that is, in a separate module, and
switch the algorithm being used by selecting
some configuration values.

9 Scalability: The framework can be upgrad-
able as its components grow and take full ad-
vantage of it. The components should be open
for extension and closed for modification
(i.e., the components should be easy to ex-
tended but without modifying the existing
codes).

10 Flexible Architecture: The framework has no
restrictions on the architecture of the control
software.

11 Support for Parallelism: RISCWare can per-
form a number of processes simultaneously.



8 J Intell Robot Syst (2013) 72:5–19

12 Fault Detection and Recovery Capabilities:
The faults in the robot framework should be
detected and localized and also, the robot
should be able to complete its mission or at
least proceed to a safe mode.

13 Asynchronous Communication: The sender
is not required to wait for the message to be
handled by the receivers.

4 Architecture of the RISCWare

The architecture of the middleware has six
primary layers for managing the heterogeneity
of the hardware and the software, and creat-
ing behaviors that will be used by many ap-
plications. As shown in Fig. 2, each layer is
cleanly separated. Each layer is cleanly separated
from the other layers. Each layer is described
in [17].

As shown in Fig. 3, the lower layer of robot mid-
dleware is the OS & Hardware Layer (OSHL),
which consists of a variety of sensors (such as
Laser RangeFinder, Sonar, Infrared sensors, etc.),
actuators, as well as the operating system (i.e.,
UNIX). The hardware drivers used in the second
layer, Hardware Abstraction Layer (HAL), are
designed to hide the details of communication

with the devices, transform the data to match units
and conventions used by the rest of the system,
and publish a message to an appropriate message
channel while having no further knowledge of that
message’s destination. The hardware driver sends
a message by creating the message in the appropri-
ate format (based on the definition of the message
format). For example, a message might contain
information on sender, receiver, time stamp, and
sensory data. Then, it places the message into the
communications system. The hardware driver also
receives a message from the communications sys-
tem, and then parses the message into its control
information and data.

In the third layer, Messaging Layer (ML), mes-
sage channels provide a very basic form of routing
capabilities. Furthermore, a message translator is
used to translate the sensor-specific (private) mes-
sages to canonical (public) messages, for example,
to transform a message generated by a SONAR1
sonar-type message to a generic sonar message.

In the Actions Abstraction Layer (AAL), chan-
nel adapters are used to send messages to or
receive them from actions in the AL, but one
instance does not do both. An adapter is channel-
specific, so a single action would use multiple
adapters to interface with multiple channels. A
message adapter takes that command or data,
converts it into a message, and sends it on a

Fig. 2 The architecture
of RISCWare middleware



J Intell Robot Syst (2013) 72:5–19 9

Fig. 3 An overview of the RISCWare middleware

particular messaging channel. Alternately, it re-
ceives a message, extracts the contents, and gives
them to the application in a meaningful way. A
channel filter can be used before the channel
adapter.

The Actions Layer (AL) consists of the soft-
ware services to perform a number of specific
tasks used for sensing, decision-making, and au-
tonomous action, such as obstacle avoidance,
navigation, face detection, etc. These software
modules communicate together using message
channels.

The Applications Layer consists of a set of tasks
that work together such as SLAM, Navigation,
Vision, etc. Each application consists of a set of
software modules (implemented in the AL). This
layer provides the required Application Program

Interface (API) to the application layer, such as
installing/uninstalling a robot application, start-
ing/stopping it, registering/unregistering a logical
device, etc.

The RISCWare is a middleware which consists
of two main parts: the core logic, which contains
the main functionalities, and the wrapper, which
provides the interface of the logic core to the
external components. SWIG, which is a free soft-
ware development tool, is used to connect be-
tween the RISCWare core (written in C++) and
the other software components (written in other
languages such as Python and Perl). SWIG sup-
ports different types of target languages, including
scripting languages such as Perl, PHP, Python, Tcl
and Ruby, and non-scripting languages such as C#,
Common Lisp (CLISP, Allegro CL, CFFI, UFFI),



10 J Intell Robot Syst (2013) 72:5–19

D, Go language, Java, Lua, Modula-3, OCAML,
Octave, and R [18].

5 Case Studies

5.1 Plug in a New Sensor

New modules (software and hardware) are easily
added to RISCWare without any change to the
existing software because of RISCWare’s loosely
coupled feature. For example, in a practical ro-
bot, several proximity sensors may exist, but the
software applications do not know and do not
need to know which proximity sensor (such as
sonar and infrared) is being used at any specific
time. If a new proximity sensor is installed, its

corresponding logical driver can be added to the
framework without any change to the rest of the
system.

5.1.1 Install a Predef ined Sensor

The user only needs to specify the location and
orientation of the sensor in the robot, the sensor
name, etc., in its hardware configuration XML
file. For example, when inserting a new sensor
of type SONAR1 to the system, as shown in
Fig. 4, RISCWare will detect this sensor and au-
tomatically publish its messages to the SONAR1
channel. The obstacle avoidance module, for ex-
ample, will not be affected (there is no need to
restart or stop any application) and it will take full
advantage of it.

Fig. 4 Installing a SONAR1 sensor



J Intell Robot Syst (2013) 72:5–19 11

5.1.2 Install a Similar Sensor

For example, before installing a SONAR3 sensor,
using the Driver Writing Tool and the SONAR
template, the non-expert developer can develop a
logical driver for SONAR3. Then this process will
exactly follow the installation of a predefined sen-
sor. This feature represents the Interchangeability
property of RISCWare.

5.1.3 Install a Completely New Sensor

When installing a completely new kind of sen-
sor, such as an IMU sensor, an expert developer
should write the logical driver for this sensor using
the Driver Writing Tool with the basic hardware
device template. This feature represents the Ex-
tensibility property of RISCWare. Furthermore,
using the logical hardware driver, a sensor can be
used in different tasks, such as the stereo camera,
can be used to produce 3D range points and also
raw images, depending on its logical driver.

5.2 Unplug or Stop a Module/Module Failure

If a failure occurs in a module (software or hard-
ware), or a user decides to stop, then the logical
hardware driver, in the case of hardware (or the
channel adapter in case of software), will detect
the failure or receive the stop command and then
publish an error message to the System Manager,
indicating that this module is stopped. The Sys-
tem Manager will send an event message to all
interested applications. Then each application de-
termines whether this sensor is critical; if so, this
application will be stopped or if it is not critical,
then it can continue. If the application stops, it will
broadcast an event message through its event port,
while notifying all of the applications that it has
stopped.

The System Manager monitors the flow of data,
manages the flow of messages through the system,
makes sure that all applications and components
are available, tracks the quality of service (e.g.
response times) of an external service, and reports
error conditions. The System Manager hides the
low level details such as the thread, resources and
state management. The System Manager plays
an important role for loading, opening, closing,

and disposing of upon completion of all modules.
Furthermore, it is used to manage the lifecycle and
states of components, and connect between them.

5.3 Change the Robot

The whole RISCWare framework can be ported
into a different robot; the developer just needs
to change its parameters through the robot
configuration file and its logical driver. A robot
configuration file is an XML file containing the
list of modules to be loaded, a description of their
interconnections (property links) and the values
of their properties.

6 RISCWare Components

A RISCWare-component is the basic functional
module of the RISCWare framework, such as:
a motor module, a sensor module, and an im-
age processing module. Each component has an
XML configuration file to customize the behav-
ior of components and a profile file to describe
the module name, version, authors, description,
static, maximum number of instances, and the
programming language used to write this compo-
nent. The component name, which is registered
in the Namespace, is automatically generated by
combining the module name with the instance
number. For the SONAR module, the names of
the instated components are SONAR1, SONAR2,
etc. The Namespace provides a map between a
logical name of sensor (used by the developer such
as SONAR1) and the physical sensor.

The module’s version is recommend to be
in the following form: (Major version).(Minor
Version).(Patch Number).(Build number) such
as (0001.0100.1120.00165). The static component
(Singleton) is instantiated only once and does not
be destroyed. This type of component is generally
used with binding to the hardware devices.

Each component should—upon system
initialization—announce its presence, register its
services, etc., in a coherent way. Furthermore, the
component has a PnP capability, which requires
that components can be added and removed
during system operation (at runtime) without
system reboot. Furthermore, the component



12 J Intell Robot Syst (2013) 72:5–19

should be reliable in the face of hardware
faults, network issues, and software errors and
exceptions. The failure of a component should
not affect the other components running on the
system.

The architecture of the RISCWare component
is shown in Fig. 5. A RISCWare component should
be a technology transparent component (different
technologies such as programming languages are
hidden from the user) and a concurrency transpar-
ent component (user should be unware that the
components are shared by others).

The RISCWare component consists of the fol-
lowing objects:
1. Core: The main process unit. It executes com-

mands, events and software scripts in the com-
ponent.

2. Input/Output data stream ports: Based on
the publisher/subscriber model, the data port
is used for exchanging data. An output port
(publisher) sends data to all registered sub-
scribers (input ports) through message chan-
nels. A data message consists of two basic
parts: the header (which describes the data

being transmitted, its origin, its data type, and
so on) and the body (data).

3. Properties: The module’s properties are
configurable at or before runtime via its com-
ponent profile (XML descriptor).

4. Finite State Machine (FSM): As shown in
Fig. 6, the RISCWare component has eight
states: Initializing, Active, Error, Starting,
Running, Aborting, Stopping and Exit.
Figure 6 shows the state transition diagram of
RISCWare’s FSM. The FSM of the component
is managed by the Component Manager. The
manager keeps track of the component’s state
and binds it to the Directory, which tracks all
the loaded components. The Initializing State
is to create and initialize the RISCWare com-
ponent by reading the XML configuration’s
file. The Active State means the component is
ready to enter the Running State. The Starting
State is a transient state before being run. The
Running State is the main state to process
the component’s task. The Stopping State is
a transient state between the Running and
Active States. The component is in a Aborting

Fig. 5 Architecture of the
RISCWare-component



J Intell Robot Syst (2013) 72:5–19 13

Fig. 6 FSM of the RISCWare component

State if an error happens in the Running State
but the component is in Error State if any
error happens in any state. To resume after an
error, a reset command should be executed.
Exist State is used to finalize and deallocate
the resources used by this component.

5. Commands/Reply port: This port is used to
receive the “Command Messages” from the
RISCWare. The Command message is used
to invoke a procedure in another application.
When the component receives a command, it
should be processed immediately (not like the
data in the data port). The command/reply
ports transmit execution flow information in
a synchronous mode.

6. Event port: The Event message is used to no-
tify another application of a change in this ap-
plication. This port is used to receive “Event
Messages” to update the FSM of the com-
ponent by changing the current state to the

next state of the FSM, based on the received
event. Furthermore, once an event is detected,
the automatic notification service will alert
the interested component that the event has
occurred. Finally, this port is used to send
“Event Messages” when the FSM of the com-
ponent is updated.

6.1 Logical Hardware Driver

The logical hardware driver is a high level in-
terface, different from the physical device inter-
face, that represents the entities that the devel-
opers like to work with, such as sonar and laser
rangefinders. The logical hardware driver is an
abstraction of the same or similar sensors. The
feature of this abstraction is to replace or upgrade
a component at run time without affecting the
other parts of the system. Often, the physical de-
vice interface, usually written in C++, is device
dependent (not portable), but the logical device
interface is device independent and portable be-
tween the similar devices. For example, the log-
ical sonar driver will return the distance (in cm
or inches) between the sensor and the detected
object, while the positional encoder will return its
position in radians.

Figure 7 shows the hardware hierarchy of
RISCWare. There are four different types of com-
ponents: sensors (such as sonar), actuators (to
control external equipments such as steering angle
and brakes), robot arms, and robot vehicles. For
example, using a Proximity Driver, it is possible to
exchange the hardware with all supported prox-
imity devices. In this way, sensors can be replaced
by similar yet not identical sensors (i.e. a sensor
of one type can be replaced by another one).
This is one of RISCWare’s features. For example,
a satellite GPS can be replaced with an odom-
etry sensor if the satellite signals are occluded.
A logical driver has parameters describing their
function stored in the Hardware Conf iguration
File. For a sensor, this may include sampling rate,



14 J Intell Robot Syst (2013) 72:5–19

Fig. 7 RISCWare
hardware hierarchy

network address, position and orientation. Fur-
thermore, different robots may use different types
and configurations of sensors for producing identi-
cal or similar information. For instance, both a 3D
laser scanner and a stereo camera can be used to
produce 3D point clouds and obstacle avoidance
can be implemented as camera-based or sonar-
based. By using an appropriate, multi-level device
abstraction hierarchy, these sensor devices could

be made exchangeable. As shown in Fig. 7, the
proximity sensor class is the general abstraction
of all proximity sensor devices, such as sonar and
infrared. The sonar class represents the sonar and
provides an interface to ultrasonic sensors such as
LV − MaxSonar® − EZ 0T M and EZ 1T M. The
infrared class represents the infrared sensors such
as Sharp GP20A21YK. The robot consists of ac-
tuators and sensors and contains fields for name,



J Intell Robot Syst (2013) 72:5–19 15

vendor and model. The actuator includes proper-
ties such as vendor, model and driver.

Each hardware driver should declare its API
Interface, which is a set of specifications and
instructions (syntax and semantics of all mes-
sages that can be exchanged) to allow interaction
with the sensory devices, actuation platforms and
software algorithms. For example, the Hokuyo
UHG-08LX Scanning Laser Rangefinder inter-
face defines the format of range readings. This
physical driver communicates with the Hokuyo
UHG-08LX Scanning Laser Rangefinder over
USB 2.0 and retrieves range data from it. Then the
logical driver translates the retrieved data to make
it conform with the data structure defined in the
interface. In this case, because the logical drivers
for all the laser range finders use the same inter-
face, the software application does not depend on
a certain vendor-type of laser range finder.

6.2 Messaging Bridge

A messaging bridge is used to connect between
robot agents that run the RISCWare system by
replicating messages between systems. “The mes-
saging bridge is a set of channel adapters, and each
pair of adapters connects a pair of corresponding
channels. The bridge acts as a map from one set
of channels to another, and also transforms the
message format of one robot to another” [19]. A
separate namespace is defined for each robot to
give the robots the ability to address each other.
A naming service maps names to addresses. The
namespace used in RISCWare is modeled as a

Fig. 8 A hierarchical namespace used in RISCWare

hierarchical namespace, presented as a directed
graph, as shown in Fig. 8. The namespace service
is used to support multirobot control.

7 Experiment and Results

The robot application, “greeting a person”, is im-
plemented to evaluate the RISCWare framework,
with respect to applicability. In Fig. 3, a robot
application of “greeting a person” is composed
of Face Detection, Face Recognition and Text
to Speech Modules. The face detection module
processes images. When it detects the face of a
human, the robot approaches the person, detects
collisions with obstacles, and sends the image to
the face recognition module in an attempt to
recognize the person. If this person is recognized,
his name will be sent to the Text to Speech Mod-
ules. Messages from both the Face Detection and
the Obstacle Avoided modules are fused by the
navigation module to control the movement of the
robot. The obstacle avoidance task is used to have
the robot avoid the moving and stationary obsta-
cles, and it uses the proximity sensors (such as the
sonar and infra red) and the range finder. Usually,
it is used with the other tasks such as Navigation.
Both the messages from the Face Detection and
Obstacle Avoidance modules are fused by the
navigation module to control the movement of the
robot. Microsft Xbox Kinect is used to capture
images at a rate of 30 fps. Raw image data is
transformed into the OpenCV Image format and
sent to the Face Detection module, using message
channels. The algorithms used for Face Detection
and Recognition modules are described in detail
in [20].

Face Detection and Recognition modules must
be tested simultaneously with the input of the
Detection Program fed into the Recognition Pro-
gram. The Face Detection Program on an av-
erage detects up to five faces in real time (30
frames/second), running on a Dual Core Intel
Processor, therefore bringing the total to 150 im-
ages/second. Figure 9 shows a sample output from
the Detection Program. The Recognition Module,
on the other hand, can take each of the detected
faces and search the database to find possible
matches. The initialization process of the Face



16 J Intell Robot Syst (2013) 72:5–19

Fig. 9 Sample output of the face detection module

Recognition database is found to be a processor
hog, hence plans to recompute the database val-
ues at run time had to be abandoned. Another
bottleneck is the total memory requirement for
the database, which increases due to storing the
feature vectors in uncompressed formats in system
memory.

In order to evaluate the performance of
RISCWare, a series of stress tests have been per-
formed, testing different message sizes (16, 32,
64, 128, 256, and 512 Bytes); the system was run
for about an hour and measured the end-to-end
data packet latency. The specifications of the used
laptop are as follows:

– Processor: 2nd generation Intel(R) Dual
Core(TM) i7-2620M (2.7 GHz, 4 MB L3
Cache), with Turbo Boost up to 3.4 GHz

– Graphics: Intel(R) HD Graphics 3000
– RAM: 8 GB DDR3

Figures 10, 11, 12, 13, 14, 15 and 16 show that
the latency of different message sizes (16, 32, 64,
128, 256, and 512 Bytes) is about 4.59 micro sec-
onds on average.

8 Conclusions

Autonomous robots are complex systems which
require the interaction between numerous het-
erogeneous components (software and hardware).
Because of the increase in complexity of ro-
botic applications and also the diverse range of
hardware, RISCWare is designed to manage the
complexity and heterogeneity of hardware and
applications, promote the integration of new
technologies, simplify software design, hide the
complexity of low-level communication and the
heterogeneity of components, improve software
quality, reuse of robotic software infrastructure
across multiple research efforts, and reduce pro-
duction costs.

In this paper, the RISCWare framework is pro-
posed as a robotic middleware for the modular
design of sensory modules, actuation platforms,
and task descriptions. RISCWare consists of three
modules. The first module encapsulates the sen-
sors that gather information about the remote or
local environment. The second module defines the
platforms, manipulators and actuation methods.

Fig. 10 Latency of the RISCWare tested using a message size of 8 bytes



J Intell Robot Syst (2013) 72:5–19 17

Fig. 11 Latency of the RISCWare tested using a message size of 16 bytes

Fig. 12 Latency of the RISCWare tested using a message size of 32 bytes

Fig. 13 Latency of the RISCWare tested using message size of 64 bytes

Fig. 14 Latency of the RISCWare tested using a message size of 128 bytes



18 J Intell Robot Syst (2013) 72:5–19

Fig. 15 Latency of the RISCWare tested using a message size of 256 bytes

Fig. 16 Latency of the RISCWare tested using a message size of 512 bytes

The last module describes the tasks that the ro-
botic platforms will perform, such as: navigation,
obstacle avoidance and map building. Finally,
some experiments, performed on the RISCbot
II mobile robot, are described to evaluate the
RISCWare middleware.

RISCWare framework provides Plug and Play,
and Dynamic Wiring: The software and hardware
components can be downloaded, installed and
configured at or before run-time.

The main advantage of the RISCWare is that
it is a modular framework whose hardware and
software work together to automatically use avail-
able sensing devices and assign resources to per-
form the required task. Furthermore, RISCWare
allows the reconfiguration of the sensors to be
used in different tasks such as the stereo camera,
which can be used to produce 3D range points
and also raw images. A demo of the behavior

of the RISCWare is uploaded to Youtube at the
following link: http://www.youtube.com/watch?
v=8uYlMB1eMwc.

References

1. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote,
T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-
source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

2. Nesnas, I.: The claraty project: coping with hard-
ware and software heterogeneity. In: Brugali, D. (ed.)
Software Engineering for Experimental Robotics. ser.
Springer Tracts in Advanced Robotics, vol. 30, ch. 3,
pp. 31–70. Springer, Berlin, Heidelberg (2007)

3. Collett, T.H., MacDonald, B.A., Gerkey, B.P.: Player
2.0: toward a practical robot programming framework.
In: Proc. of the Australasian Conf. on Robotics and
Automation (ACRA). Sydney, Australia (2005)

http://www.youtube.com/watch?v=8uYlMB1eMwc
http://www.youtube.com/watch?v=8uYlMB1eMwc


J Intell Robot Syst (2013) 72:5–19 19

4. Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G.:
Miro-middleware for mobile robot applications. IEEE
Trans. Robot. Autom. 18(4), 493–497 (2002)

5. Michel, O.: Webots: professional mobile robot simula-
tion. J. Adv. Robot. Syst. 1, 39–42 (2004)

6. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T.,
Yoon, W.-K.: RT-component object model in RT-
middleware–distributed component middleware for
RT (Robot Technology). In: 2005 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
2005, (IROS 2005), vol. 2–6, pp. 3933–3938 (2005)

7. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic
software systems: from code-driven to model-driven
designs. In: International Conference on Advanced
Robotics, 2009, ICAR 2009, vol. 22–26, pp. 1–8 (2009)

8. ERSP 3.1 software development kit: Online: http://
www.evolution.com/products/ersp/ (2010)

9. Alexei Makarenko, A.B., Kaupp, T.: On the benefits
of making robotic software frameworks thin. In:
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’07), 29 Oct.–02 Nov. 2007.
San Diego CA, USA (2007)

10. Jang, C., Lee, S.-I., Jung, S.-W., Song, B., Kim, R., Kim,
S., Lee, C.-H.: OPROS: a new component-based robot
software platform. ETRI J. 32, 646–656 (2010)

11. Jackson, J.: Microsoft robotics studio: a technical in-
troduction. IEEE Robot. Autom. Mag. 14(4), 82–87
(2007)

12. Kramer, J., Scheutz, M.: Development environments
for autonomous mobile robots: a survey. Autonomous
Robots 22(2), 101–132 (2007)

13. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Middleware
for robotics: a survey. In: 2008 IEEE Conference on
Robotics, Automation and Mechatronics, 21–24 Sept.,
pp. 736–742 (2008)

14. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: A review
of middleware for networked robots. Intl. Journal of
Computer Science and Network Security 9(5), 139–148
(2009)

15. Namoshe, M., Tlale, N., Kumile, C., Bright, G.: Open
middleware for robotics. In: 15th International Confer-
ence on Mechatronics and Machine Vision in Practice,
2008. M2VIP 2008, 2–4 Dec., 189–194 (2008)

16. Elkady, A., Sobh, T.: Robotics middleware: a compre-
hensive literature survey and attribute-based bibliogra-
phy. J. Robot. 2012, 15 (2012). doi:10.1155/2012/959013

17. Elkady, A., Joy, J., Sobh, T.: A plug and play mid-
dleware for sensory modules, actuation platforms and
task descriptions in robotic manipulation platforms.
In: Submitted to Proc. 2011 ASME International De-
sign Engineering Technical Conf. and Computers and
Information in Engineering Conf. (IDETC/CIE ’11)
(2011)

18. Swig: Website. http://www.swig.org/ (2011)
19. Hohpe, G., Woolf, B.: Enterprise Integration Patterns:

Designing, Building, and Deploying Messaging Solu-
tions. Addison-Wesley Professional (2003)

20. Elkady, A., Babariya, V., Joy, J., Sobh, T.: Modular
design and implementation for a sensory-driven mobile
manipulation framework. J. Intell. Robot. Syst. 1–27
(2010). doi:10.1007/s10846-010-9454-3

http://www.evolution.com/products/ersp/
http://www.evolution.com/products/ersp/
http://dx.doi.org/10.1155/2012/959013
http://www.swig.org/
http://dx.doi.org/10.1007/s10846-010-9454-3

	A Structured Approach for Modular Design in Robotics and Automation Environments
	Abstract
	Introduction
	Related Work
	Features
	Architecture of the RISCWare
	Case Studies
	Plug in a New Sensor
	Install a Predefined Sensor
	Install a Similar Sensor
	Install a Completely New Sensor

	Unplug or Stop a Module/Module Failure
	Change the Robot

	RISCWare Components
	Logical Hardware Driver
	Messaging Bridge

	Experiment and Results
	Conclusions
	References


